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Abstract—Strongly consistent callback cache mechanisms have been studied for data access in wireless networks. In cache access

mechanisms, update information is extremely important since an updated data object in a remote server makes the corresponding data

objects invalidated in mobile terminals (MTs), and the data object cache hit information in those MTs becomes almost useless. In this

paper, we propose an adaptive access mechanism, called optimal callback with two-level adaptation. In the first-level adaptation,

cache size in an MT is adaptively adjusted based on update-to-access-ratio (UAR), defined as the average number of updates per data

object access. The range of the cache size is [0, M], where M is the maximum physical cache size of the MT. Two extreme cases are

given as follows: 1) When the UAR is very large so that objects in the cache are always obsolete, the cache should not be used and,

therefore, the cache size should be set to zero; 2) when the UAR is zero so that every object in the cache is valid, the cache size should

be set to M. Under other situations, the cache size is dynamically changed between 0 and M. Define U-threshold of the UAR for any

object, a particular important threshold, as a UAR value, beyond which the object should be not cached at all. The idea of the second-

level adaptation is that if an object size is small, sending back the object may be a better choice than sending back an invalidation

message when the object is updated. Therefore, when an object is updated at the server, it is sent directly to MTs if the object size is

smaller than a threshold, called Push Threshold (T ); otherwise, an invalidation message is sent to the MTs. We analytically model cost

function for the proposed adaptive scheme as the total traffic involved between the server and an MT per data object access, and the

optimal cache size and the optimal T value are obtained simultaneously to minimize the cost function. Furthermore, U-threshold is

derived analytically. Both simulations and analytical results are used to study and compare the performance of the proposed scheme

with several others under many different scenarios.

Index Terms—Adaptive, cache, callback, strong consistency, wireless data access.
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1 INTRODUCTION

TECHNOLOGY advances increase popularity and availability
of modern mobile wireless networks. Accessing informa-

tion from mobile handheld devices is demanded by the huge
population of users and has been made possible by the
computational and visual capability of cost efficient mobile
handheld devices and the wide coverage of wireless net-
works, especially personal communication networks. Ser-
vices provided through mobile wireless networks are rich, for
example, instant content access, banking, e-commerce, and
gaming, but suffer from their inherent constraints, such as
bandwidth limitation, high cost of radio frequency, and the
limited battery power of mobile terminals. High commu-
nication cost and latency caused by mobile wireless networks
are not relieved due to the increasing number of users and
their accesses to multimedia.

Wireless Application Protocol (WAP) and iSMS have
been developed to support wireless Internet applications
[1], [2], [3], [4], [5], [18], [19]. For example, a wireless
terminal can obtain data objects from an application server
via the wireless application gateway, which internetworks
the wireless network with the IP network [5]. A mobile user
can access Internet Web applications through a client/

server model. Cache can also be used in the client mobile
terminal to buffer frequently/recently used data objects
sent from the server [6]. For some applications, a strongly
consistent data access protocol must be exercised between
the client and the server [5], [8]. In [5], Lin et al. implement a
business card service that is a generalization of the phone
book feature in mobile devices, and is one of the most
popular features in mobile devices.

Cao [9], [10] proposes an Invalidation Report (IR) based
cache invalidation algorithm, which efficiently utilizes the
broadcast bandwidth to intelligently broadcast the data
requested by clients. In [5], Lin et al. study two strongly
consistent algorithms for wireless data access: poll-each-read
(PER) and callback (CB), using both analytical models and
simulations. In the PER mechanism [11], [12], [13], if the
data object that a client requests is not in the cache, the
client requests it from the server; otherwise, the client
always asks the server to check its validity. If it is valid, the
server informs the client and the client uses the data object;
if it is not valid, the server sends the updated data object to
the client to replace the out-of-date data object in the client
cache. In the CB mechanism [10], [11], [12], when a data
object is to be changed at a server, the server informs the
client, the client marks the data object in the cache as
invalid, and the space can be reclaimed to accommodate
other data objects.

In this paper, we have three observations for the CB
scheme: 1) When the update-to-access-ratio (UAR) is so
large that objects in the cache are always obsolete, such as
stock information, the cache should not be used and,
therefore, the cache size should be set to zero, 2) when the
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UAR is zero so that every object in the cache is always valid,
the cache size should be set to the maximum physical cache
size of the mobile terminal, and 3) when a data object is
updated at the server and its size is very small, the data
object instead of an invalidation message should be sent
back to the client. Therefore, we propose an adaptive access
mechanism, called optimal callback with two-level adaptation,
as described in the abstract. Note that the proposed callback
with a two-level adaptation scheme is also called adaptive
CB in this paper. We provide an analytical model and study
the optimality of the cache size and the Push Threshold
value simultaneously, and U-threshold (described in the
abstract) is obtained analytically. Simulations are conducted
not only to validate the analytical models, but also to
provide performance studies under more general assump-
tions than those in analytical models.

The rest of this paper is organized as follows: Section 2
proposes adaptive data access schemes. Section 3 provides
analytical models. Section 4 studies optimality issues.
Section 5 provides performance evaluation via both
analytical results and simulation results. Finally, we
conclude this paper in Section 6.

2 CACHE ACCESS MECHANISMS

A caching mechanism involves many aspects, among which
two important aspects are a cache access scheme and a
replacement policy. A cache access scheme defines how a
client and a server exchange messages and objects.
Examples of cache access schemes are callback, PER, IR,
etc. A replacement policy is associated with a cache access
scheme to define how to evict an object in the cache when
the cache is full. A replacement policy may or may not be
related to a cache access scheme. Examples of cache
replacement policies are Least Recently Used (LRU), Least
Frequently Used (LFU), and many more. The proposed
callback with two-level adaptation is an access scheme, but
not a replacement policy. In other words, any replacement
policy can be applied to the proposed access scheme.
However, in our analytical model introduced in the next
section, we adopt the LRU replacement policy as an
example. But, our proposed callback with two-level
adaptation scheme is not limited to LRU.

How the objects are ranked after being visited totally
depends on the replacement policy. For example, the LRU
policy ranks visited objects based on the recent time being
visited, and the LFU policy ranks visited objects based on
the frequency of visited objects during a time period. The
rank is for defining how to replace or evict an object from
the cache when the cache is full. The number of objects in
the server is always larger than (or equal to) the number of
objects in the cache.

Next, we describe the proposed adaptive data access
scheme and several related schemes.

2.1 Push, Invalidation, and Fetch

There are several callback (CB) schemes. The scheme
described in the Introduction as well as in [5] is referred
to as the Invalidation scheme in this paper. We define
another callback scheme, called the Push scheme, in which,
when a data object is updated at the server, the object is sent

to the client instead of an invalidation message. The
Invalidation scheme and the Push scheme are two special
cases of the callback scheme.

We further define another scheme, called the Fetch
scheme, in which the cache is disabled. Specifically, when
a client needs a data object, it always requests the data
object from the server that sends the data object to the client;
when an object is updated at the server, no further
procedure is needed.

2.2 Optimal Callback with Two-Level Adaptation

In the proposed optimal callback scheme, we consider both
cache size and object size. Assume that the maximum
physical cache size in a mobile terminal is M in terms of the
number of objects it can hold. The range of the cache size is
[0, M]. In the proposed scheme, the cache size is adaptively
adjusted based on update-to-access-ratio (UAR), defined as
the average number of updates per data object access. One
extreme case is that when the UAR is so large that objects in
the cache are always obsolete, the cache should not be used
and, therefore, the cache size should be set to zero. In other
words, the Fetch scheme should be used. Note that the Fetch
scheme can be treated as a special case when the cache size is
zero. Another extreme case is that when the UAR is zero, the
cache size should be M. Under other situations, the cache
size is dynamically changed between 0 and M. Define the
U-threshold of the UAR for any object, a particularly
important threshold, as a UAR value, beyond which the
object should be not cached at all. If all objects’ UARs are
beyond the U-threshold, the cache should be disabled, i.e.,
the optimal cache size is zero. Note that if all objects’ UARs
are beyond the U-threshold, objects in the cache are not
necessarily obsolete. In other words, the U-threshold further
strengthens the first extreme case mentioned above. When
the UARs of some objects are smaller than the U-threshold
and some of them are not, the cache size is dynamically
changed between 0 and M, and those objects whose UARs
are smaller than the U-threshold are candidates for caching.

Let Oj; j ¼ 1; . . . ; Nð Þ denote the data object j, where N is

the number of data objects. Let Uj; j ¼ 1; . . . ; Nð Þ denote the

UAR value of the object j. We haveUj ¼ �j
�
�j; j ¼ 1; . . . ; Nð Þ,

where �j and �j are the update rate and access rate of the

object j, respectively. The UAR is defined as U ¼ �=�, where

� ¼
PN

j¼1 �j=N is the average update rate and� ¼
PN

j¼1 �j=N

is the average access rate.
In the second-level adaptation, when an object is

updated at the server, it is sent directly to the client if the
object size is smaller than a threshold, called Push Thresh-
old (T ); otherwise, an invalidation message is sent to the
client. The proposed adaptive scheme is shown in Fig. 1 and
is explained as follows: In Step 1.1, when an access to one
data object happens, the UAR information is updated so
that the access to this object is taken into consideration. If it
is a cache hit and the object is valid, the object is used;
otherwise, Step 1.2 is executed to request the object from the
server. In Step 1.3, the server sends back the object, in
Step 1.4, the object is used, and based on the UAR value,
U-threshold, and replacement policy, three issues are
decided: 1) cache size K, 2) whether to cache this object or
not, and 3) whether to evict another object from the cache or
not. How to process 1, 2, and 3 will be discussed in later
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sections. On the other hand, when an object is updated at
the server (Step 2.1), if the object size is smaller than the
Push threshold T , the updated object is sent back the client
in Step 2.2; otherwise, an invalidation message is sent to the
client in Step 2.6. In both Step 2.3 and Step 2.7, the UAR
information is updated so that the update to this object is
taken into consideration. In Step 2.3, if UAR < U-threshold,
the object is replaced; otherwise, the object is evicted. In
Step 2.7, the object is evicted.

If the sizes of all objects are larger than T , the second
level adaptation scheme in Fig. 1 is equivalent to the
Invalidation scheme. On the other hand, if the sizes of all
objects are not larger than T , the second level adaptation
scheme in Fig. 1 is equivalent to the Push scheme. The
proposed scheme is an adaptive scheme between the
Invalidation scheme and the Push scheme from this aspect.
Our goal is to find an optimal threshold T to minimize the
total traffic involved between the server and the client per
data object access. It is clear that T should be not smaller
than the size of the invalidation message.

In the mean time, another goal is to minimize the total
traffic involved between the server and the client per data
object access with an optimal cache size, based on the UAR.
If the UAR is very large, we need to use the Fetch scheme.

Our major goal is to minimize the total traffic involved
between the server and the client per data object access with
an optimal cache size K and an optimal T value simulta-
neously, based on the value U in later sections.

3 ANALYTIC MODELS

Lin et al. [5] propose analytical models for the Invalidation
scheme and Poll-Each-Read scheme. Based on [5], we obtain
an analytic model for the proposed adaptive CB cache
mechanism under the Least Recently Used (LRU) replace-
ment policy in Section 3.1. The proposed data access schemes
are different from those in [5] so that analytical models are
different. Then, we formulate a cost function as the total
traffic involved between a server and a client in a mobile

device per data object access in Section 3.2. We simplify the

cost function under the assumption that object updates

follow Poisson distribution in Section 3.3. This assumption

will be loosened in the simulation Section 5.6, in which we

adopt a cutoff Zipf-like update distribution [17], [18]. In

Section 3.4, we study two special cases of the call scheme, i.e.,

the Push scheme and the Invalidation scheme. Finally, we

study the cost when cache is disabled, i.e., the Fetch scheme,

and give an approach to derive the U-threshold.

3.1 An Analytic Model

We have following assumptions:

. Sizes of mobile objects follow a density distribution
gðxÞðx > 0Þ.

. A client can hold K objects in its local cache
regardless object sizes. This assumption is loosened
in simulations in Section 5.7.

. Accesses to a data object Okðk ¼ 1; . . . ; NÞ follow
the Poisson distribution with rate �k, where �k ¼
�ðk ¼ 1; . . . ; NÞ:

. Interarrival times between updates of a data object

Okðk ¼ 1; . . . ; NÞ follow a general distribution with

the density function fkðtÞ with the mean 1=�k,

and the Laplace transform f�k ðsÞ ¼
R1
t¼0 fkðtÞe�stdt,

where �k¼� and fkðtÞ ¼fðtÞ for ðk ¼ 1; . . . ; NÞ.
A data object Oi in the cache of the client is moved to the

top of the cache when Oi is accessed. Consider Fig. 2,
where the current access to Oi occurs at time t4, the
previous access to Oi occurs at time t0, the previous update
of Oi occurs at time t1, and the next update of Oi occurs at
time t7. Consider another object Oj in Fig. 2, where the
previous access to Oj occurs at time t3, the next access to Oj

occurs at time t5, the previous update of Oj occurs at time
t2, and the next update of Oj occurs at time t6. We have
minft0; t1; t2; t3g < t4 < minft5; t6; t7g. Therefore, �0 and �3

have exponential distributions with mean 1=�, and �1 and
�2 have same general distributions with mean 1=�.
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Since data access to Oi at t4 is a random observer to �3

(property of the Poisson process), ��3 has the same distribution
as �3 based on the excess life theorem [14] and the memoryless
property of the exponential distribution. Furthermore, since
data access to Oi at t4 is a random observer to �1 and �2

(property of the Poisson process), based on the excess life
theorem [14], ��1 and ��2 have density functions r��

1
ðtÞ and

r��
2
ðtÞ, respectively, where r��

1
ðtÞ ¼ r��

2
ðtÞ ¼ �

R1
x¼t fðxÞdx and

their Laplace transforms r���
1
ðsÞ ¼ r���

2
ðsÞ ¼ �

s 1� f�ðsÞ½ �; ��1 and

��2 have distribution functionsR��
1
ðtÞ andR��

2
ðtÞ, respectively,

where R��
1
ðtÞ ¼ R��

2
ðtÞ ¼ RðtÞ.

After the access at t0,Oi is stored in the cache with Rank 1

due to LRU. The cache ranking of Oi is not affected by an

access to Oj during �0 if Oj is invalidated after the access;

otherwise, the cache ranking of Oi is affected by an access to

Oj. Oj is invalidated after an access to Oj if Oj
0s object size

(L) is larger than the Push Threshold (denoted as T ) and

t3 < t2 (the same as ��3 > ��2 ). In other words, the cache

ranking of Oi is affected by an access to Oj during �0 if one

of the following conditions happens: 1) t3 > t2 (the same as

��3 < ��2 ) or 2) if Oj
0s object size (L) is not larger than T and

t3 < t2 (the same as ��3 > ��2 ). Let �ðtÞ be the probability that

the cache ranking of Oi is affected by an access to Oj under

the condition �0 ¼ t. Based on the derivation in Appendix A,

we have

�ðtÞ ¼ 1� e��t � Pr L > Tð Þ
Z t

��
3
¼0

�e���
�
3Rð��3 Þd��3 : ð1Þ

Let PAdaptive CB be the probability that an effective cache

hit occurs at time t4 when the adaptive CB scheme is

adopted, respectively. The cached object Oi is not invali-

dated during period �0 if one of the following two

conditions happens: 1) ��1 > �0 or 2) ��1 < �0 and Oi
0s object

size (L) is not larger than T . Based on the derivation in

Appendix A, we have

PAdaptive CB ¼
XK�1

k¼0

ðN�1
k Þ

Z 1
�0¼0

�ð�0Þ½ �k 1� �ð�0Þ½ �N�k�1

�e���0 1� Pr L > Tð ÞRð�0Þ½ �d�0:

ð2Þ

3.2 Cost Function

In Fig. 1, the sizes of the request message in Step 1.2, the
acknowledgement messages in Step 2.4 and 2.8, and the
invalidation message in Step 2.6 are denoted as LReq, LACK ,
and LInv, respectively. Their values are fixed values. An

object size L is a variable value. In Step 1.3, there is no

restriction on the object sizeL. In Step 2.2, the object size (L) is

not larger than the push threshold, i.e., L � T . Let MðLÞ be a

cost when the message size is L. LetEðUÞ denote the average

number of updates of an object per data access to this object.

Let EðLÞ denote the mean value of object sizes. Let EðLlowÞ
denote the mean value of object sizes that are smaller than T .

Let EðUÞ denote the average number of updates of an object

per data access to this object. We formulate the cost function

CAdpative�CB per access event as follows:

CAdpative�CB ¼ ð1� PAdaptive CBÞ MðLReqÞ þMðEðLÞÞ
� �

þ EðUÞ
�

PrðL > T ÞMðLInvÞ þMðLACKÞ½ �
þ PrðL � T ÞMðE Llowð ÞÞ þMðLACKÞ½ �

�
:

ð3Þ

3.3 Poisson Update Distribution

In this section, we further assume that updates of a data
object Okðk ¼ 1; . . . ; NÞ follow a Poisson distribution with
rate �k ¼ �ðk ¼ 1; . . . ; NÞ. Note that this assumption is
loosened in the simulation Section 5.6, in which we adopt a
cutoff Zipf-like update distribution [17], [18]. Define update-
to-access ratio (UAR) asU ¼ �=�. Similar to [15], [16], we have

EðUÞ ¼ U: ð4Þ

Then, ��1 and ��2 become exponential distributions, and

RðxÞ ¼ ½1� e��x�. Equations (1) and (2) become (5) and (6),

respectively:

�ðtÞ

¼ 1� e��t � Pr L > Tð Þ
Z t

��
3
¼0

�e���
�
3Rð��3 Þd��3

¼ 1� e��t � Pr L > Tð Þ
Z t

��
3
¼0

�e���
�
3 ½1� e����3 �d��3

¼ 1� e��t � Pr L > Tð Þ 1� e��t
� �

� �

�þ � 1� e�ð�þ�Þt
	 
� �

¼ Pr L � Tð Þ 1� e��t
� �

þ Pr L > Tð Þ 1

1þ U 1� e�ð�þ�Þt
	 


;

ð5Þ

PAdaptive CB ¼ AðT Þ � Pr L > Tð ÞBðT Þ; ð6Þ

where

AðT Þ �
XK�1

k¼0

ðN�1
k Þ

Z 1
�0¼0

�ð�0Þ½ �k 1� �ð�0Þ½ �N�k�1�e���0d�0; ð7Þ
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BðT Þ �
XK�1

k¼0

ðN�1
k Þ

Z 1
�0¼0

�ð�0Þ½ �k 1� �ð�0Þ½ �N�k�1�e���0 1� e���0
� �

d�0:

ð8Þ

Define MðxÞ ¼ x, i.e., the cost of a message is the size of

the message. Equation (3) becomes (9):

CAdpative�CB ¼ 1�AðT Þ þ Pr L > Tð ÞBðT Þ½ � LReq þ EðLÞ
� �

þ U LInv PrðL > T Þ þE Llowð ÞPrðL � T Þ þ LACK½ �:
ð9Þ

Our goal is to minimize CAdpative�CB with both cache size

K the Push threshold T .

3.4 Extreme Cases: Push and Invalidation

In this section, we consider two extreme/special cases.

Note that if L > T holds for all the time, the adaptive CB

scheme becomes the Invalidation scheme; if L � T holds for

all the time, the adaptive CB scheme becomes the Push

scheme; and the adaptive CB scheme is an adaptive scheme

based on the object size between the Invalidation scheme

and the Push scheme. Let �InvðtÞ and �PushðtÞ denote �ðtÞ
values for the Invalidation scheme and the Push scheme,

respectively. Let PInv and PPush denote effective hit ratio

values for the Invalidation scheme and the Push scheme,

respectively. Let CInv and CPush denote costs values per

data object access for the Invalidation scheme and the Push

scheme, respectively. We have

�PushðtÞ ¼ 1� e��t
� �

: ð10Þ

Based on the derivation in Appendix B, we have

PPush ¼
K

N
: ð11Þ

We have

CPush ¼ 1�K
N


 �
LReq þ EðLÞ
� �

þ U EðLlowÞ þ LACK½ �; ð12Þ

�InvðtÞ ¼
�

�þ � 1� e�ð�þ�Þt
	 


: ð13Þ

Based on the derivation in Appendix B, we have

PInv ¼

PK�1

k¼0

PN
n¼kþ1

ðNn ÞUN�n

N 1þ Uð ÞN
; ð14Þ

CInv ¼ 1�

PK�1

k¼0

PN
n¼kþ1

ðNn ÞUN�n

N 1þ Uð ÞN

0
BBB@

1
CCCA LReq þ EðLÞ
� �

þ U LInv þ LACKð Þ: ð15Þ

3.5 Fetch and U-Threshold

For the Fetch scheme, the cost function is very simple and is

given as follows:

CFetch ¼ LReq þ EðLÞ: ð16Þ

The U-threshold is defined as a U value when the Fetch

scheme is better than the adaptive CB scheme in (9).

Therefore, when U is larger than U-threshold, the Fetch

scheme is adopted, i.e., the cache is disabled or the cache

size is zero. To obtain U-threshold, we can numerically solve

the equation: CFetch ¼ CAdpative�CB.

4 OPTIMALITY ANALYSIS

In this section, we conduct optimality analysis for the

proposed scheme. In Section 4.1, we study optimality of the

Push threshold. In Section 4.2, we study optimality of cache

size as functions of U ¼ �=�. Finally, in Section 4.3, we

discuss how to optimize both the cache size and the Push

threshold simultaneously.

4.1 Optimal Push Threshold

We study a constant distribution, a uniform distribution,

and an exponential distribution for data object sizes one by

one. Note that other distributions of data object sizes can be

pursued similarly.

4.1.1 Data Object: Same Size

In this section, we assume that the sizes of data objects are

all the same. Under such an assumption, we will try to find

the optimal T value to minimize CAdpative�CB. The density

function has the following form:

gðxÞ ¼ 1; x ¼ L
0; otherwise:

�
ð17Þ

Since both L and T are fixed values, we have either

PrðL < T Þ ¼ 0 or PrðL < T Þ ¼ 1 all the time. If L > T , this is

the Invalidation scheme; otherwise, if L � T , this is the Push

scheme. To choose the optimal T , we can let CPush ¼ CInv
using (12) and (15). We have EðLÞ ¼ EðLlowÞ ¼ T and

TOptimal ¼ ULInv þ
K

N
LReq � LReq

PK�1

k¼0

PN
n¼kþ1

ðNn ÞUN�n

N 1þ Uð ÞN

2
6664

3
7775
,

U �K
N
þ

PK�1

k¼0

PN
n¼kþ1

ðNn ÞUN�n

N 1þ Uð ÞN

2
6664

3
7775:

ð18Þ

Assuming that LInv ¼ LReq, we have

TOptimal ¼LInv U �

PK�1

k¼0

PN
n¼kþ1

ðNn ÞUN�n

N 1þ Uð ÞN
þK
N

2
6664

3
7775
,

U þ

PK�1

k¼0

PN
n¼kþ1

ðNn ÞUN�n

N 1þ Uð ÞN
�K
N

2
6664

3
7775:

ð19Þ
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We have two intuitions as follows: First, as stated before,
when an object size is not larger than the invalidation
message size, then the object should be sent instead of the
invalidation message. In other words, we should have
TOptimal � LInv. Second, when the update rate is extremely
high and the access rate is small, a data object in cache is
more likely to be obsolete very often. Under such a
condition, the replaced objects have less usage, and the

scheme merges to the Invalidation scheme. Therefore, we

should have lim
U!1

TOptimal ¼ LInv. We have the following

lemma, and the proof is shown in Appendix C:

Lemma 1. If we assume that LInv ¼ LReq holds and data
objects are all the same size, we have TOptimal � LInv and
lim
U!1

TOptimal ¼ LInv.
However, in our proposed optimal callback with two-

level adaptation scheme, when U is large enough, the Fetch
scheme should be used. In the above lemma, we did not
consider the cache size and, therefore, the Fetch scheme is
not considered.

Note that T is the threshold which is independent of the
data object size, and therefore, T is fixed when data objects
have the same size.

4.1.2 Data Object Size: Uniform Distribution

Assume that data object sizes follow a uniform distribution
as follows:

gðxÞ ¼
1
2a ; x 2 ½EðLÞ � a;EðLÞ þ a�
0; otherwise:

�
ð20Þ

Since T < EðLÞ � a is meaningless and T > EðLÞ þ a
is equivalent to T ¼ EðLÞ þ a, we only consider T 2
EðLÞ � a;EðLÞ þ a½ �: Then, we have

PrðL � T Þ ¼ T �EðLÞ þ a
2a

; ð21Þ

PrðL > T Þ ¼ EðLÞ þ a� T
2a

; ð22Þ

EðLlowÞ ¼
T þEðLÞ � a

2
: ð23Þ

Plugging (21)-(23) into (5)-(9), we have

CAdpative�CB

¼ 1�AðT Þ þBðT ÞEðLÞ þ a� T
2a

� �
LReq þ EðLÞ
� �

þ U

LInv
EðLÞ þ a� T

2a
þ T þ EðLÞ � a

2

T �EðLÞ þ a
2a

þ LACK
� �

:

ð24Þ
We obtain the first derivative of (24) as follows:

@CAdpative�CB
@T

¼ � @AðT Þ
@T

�BðT Þ
2a
þEðLÞ þ a� T

2a

@BðT Þ
@T

� �
LReq þ EðLÞ
� �

þ U �LInv
1

2a
þ 1

2

T � EðLÞ þ a
2a

þ T þ EðLÞ � a
2

1

2a

� �
:

ð25Þ

If we let
@CAdpative�CB

@T ¼ 0, we can obtain the optimal
threshold TOptimal explicitly.

4.1.3 Data Object Size: Exponential Distribution

Assume that data object size follows an exponential
distribution as follows:

gðxÞ ¼ �e��x; x > 0
0; otherwise:

�
ð26Þ

Since considering T < 0 is meaningless, we only consider
T � 0. Then, we have

PrðL � T Þ ¼
Z T

x¼0

�e��xdx ¼ 1� e��T ; ð27Þ

PrðL > T Þ ¼
Z 1
x¼T

�e��xdx ¼ e��T ; ð28Þ

EðLÞ ¼ 1

�
; ð29Þ

EðLlowÞ ¼
Z T

x¼0

�xe��xdx ¼ 1

�
� Te��T � 1

�
e��T : ð30Þ

Plugging (27)-(30) into (5)-(9), we have

CAdpative�CB ¼ 1�AðT Þ þ e��TBðT Þ
� �

LReq þ
1

�


 �

þ U LInve
��T þ 1

�
� Te��T � 1

�
e��T


 �
1� e��T
� �

þ LACK
� �

:

ð31Þ

We obtain the first derivative of (31) as follows, while the
derivation is shown in Appendix D:

@CAdpative�CB
@T

¼

� @AðT Þ
@T

� �e��TBðT Þ þ e��T @BðT Þ
@T

� �
LReq þ

1

�


 �
þ U

��LInve��T þ e��T � Te�2�T � 1

�
e�2�T þ �Te��T � �Te�2�T

� �
:

ð32Þ

If we let
@CAdpative�CB

@T ¼ 0, we can obtain the optimal threshold
TOptimal numerically.

4.2 Optimal Cache Size

The cache size K has a finite range [0, M], where M is the
maximum physical cache size in an MT. For a given Push
threshold and a given UAR, we can obtain the optimal
K value by comparing M+1 values of the cache size.

One extreme case is that when the UAR is very large, the
Fetch scheme should be used since objects are always
obsolete. Note that the Fetch scheme can be treated as a
special case when the cache size is zero. Another extreme
case is that when the UAR is zero, the cache size should be M.
In other words, the optimal K value (KOptimalðT; UÞ) is a
function (F ðT; UÞ) of the Push threshold and UAR as follows:

KOptimalðT; UÞ ¼ F ðT; UÞ ¼
0; U � UThreshold
M; U ¼ 0
F ðT; UÞ; otherwise:

8<
:

ð33Þ
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The function F can be achieved by comparing the finite
number of cases.

4.3 Optimizing Both the Cache Size and the Push
Threshold Simultaneously

The major goal of this paper is to show that we can optimize
T and K at the same time. We adopt the following steps:

Step 1: For each fixed K value within [0, M], obtain the
optimal cost COptimalðKÞ with the optimal Push threshold
TOptimalðKÞ.

Step 2: Compare the above M+1 values to find the
minimum cost COptimal and corresponding TOptimal and
KOptimal. We have

COptimal ¼ min
0�K�M

fCOptimalðKÞg; ð34Þ

TOptimal ¼ TOptimalðk1Þ;
where COptimalðk1Þ ¼ min

0�K�M
fCOptimalðKÞg; ð35Þ

KOptimal ¼ k1;where COptimalðk1Þ ¼ min
0�K�M

fCOptimalðKÞg:

ð36Þ

4.4 Comments on U-Threshold

In Section 3.5, we explain how to obtain U-threshold. An

alternative way of obtaining it is described as follows:

U-threshold is a threshold that, when the UAR value is larger

than the threshold, the cache is disabled. In another words,
the cache size is 0 when the UAR is larger than U-threshold.

According to (19), (25), and (32), T -thresholds can be

estimated with a given K. By using the estimated
T -thresholds, we can compute the cost at any K and UAR.

We compare the cost for all the cases when K ¼ 0; 1; to M

by given a UAR. Therefore, we know theK value for a given

UAR. The least UAR that makes K equal to 0 will be
U-threshold.

5 PERFORMANCE EVALUATION

In this section, we conduct performance evaluation for all
the schemes. In Section 5.1, we conduct simulations to
verify analytical results. We study the optimal Push
Threshold in Section 5.2. We study optimal cost when the
cache size and Push threshold are optimized simulta-
neously in Section 5.3. In Section 5.4, we study the
U-threshold. In Section 5.5, we study the impact of the size
of N. In Section 5.6, we will loosen the assumption that the
object updates have the same ratio. Furthermore, we will
loosen the assumption that the update process follows
Poisson distribution, and instead, we adopt a cutoff Zipf-
like update distribution [17], [18], which is believed to be a
realistic distribution. Finally, in Section 5.7, we further
loosen the assumption that a client can hold K objects in its
local cache regardless object sizes in our simulations. Note
that in Sections 5.1, 5.5, 5.6, and 5.7, results are simulation
results, and in Sections 5.1, 5.2, 5.3, and 5.4, results are
numerical results of analytical models.

Define update-to-access ratio (UAR) as U ¼ �=�, where � is
the update rate and � is the access rate. Let M denote the
maximum physical size of an MT, where 0 � K �M � N ,

and K is the cache size and N is the total number of objects
at the server. L denotes the object size, and EðLÞ denotes
the mean of L. T denotes the Push threshold and
U-threshold denotes the UAR threshold. We have the
following parameters unless otherwise stated: N ¼ 100,
M ¼ 70, K ¼ 70, � ¼ 1, and LInv ¼ LReq ¼ LACK ¼ 30.

5.1 Simulation Validations

Fig. 3 shows the costs of simulations and analytic results
where LInv ¼ LReq ¼ LACK ¼ EðLÞ=2 ¼ 60 and K ¼ 50. The
simulation adopts discrete event simulation using C++.
Fig. 3 indicates that analytical results match simulation
results exactly for both the Push scheme and the Invalida-
tion scheme.

5.2 Optimal Push Threshold

We study a constant distribution, a uniform distribution,
and an exponential distribution for object sizes in this
section.

Figs. 4a, 4b, and 4c show the costs under a constant
distribution, a uniform distribution, and an exponential
distribution, respectively, where EðLÞ ¼ 30. Fig. 4a shows
the cost over the object size, and Figs. 4b and 4c show the
cost over the Push threshold. Figs. 4a, 4b, and 4c all indicate
that when U is larger, the cost is higher, since there are more
updates. Fig. 4a shows that when the object size is small, the
Push scheme is better, and when the object size is large, the
Invalidation scheme is better. Figs. 4b and 4c show that the
cost decreases as the threshold T increases when T is small,
and increases as T increases when T is large. Therefore, an
optimal T value exists for both Figs. 4b and 4c. Figs. 4b and
4c also show that the shapes of curves are similar under
uniform and exponential distributions of object sizes.

In Fig. 4a, a larger U value makes the cost caused by data
object updates weigh more than the cost caused by data
object accesses, and therefore, causes either the Push
scheme or the Invalidation scheme to perform better than
another based on the object size. With some simple
calculations, CPush � CInvð Þ=CInv could be as high as (�)
30~40 percent. Therefore, a better design is necessary.

Fig. 5 shows TOptimal values over U under a constant

distribution, a uniform distribution, and an exponential
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Fig. 3. Simulation results versus analytical results. (a) Cost versus U
(Invalidation). (b) Cost versus U (Push).



distribution, respectively, where TOptimal is the optimal Push

threshold and EðLÞ ¼ 30. Fig. 5a shows that when U is not

very large (<1.5), TOptimal increases as U increases, and when

U is large, TOptimal decreases slowly as U increases since a

data object in cache is more likely to be obsolete very often

and the replaced objects have less usage. For the uniform

distribution and the exponential distribution, the curves

(Figs. 5b and 5c) are similar to Fig. 5a, except that TOptimal
changes more slowly with the U value.

Fig. 6 shows costs over the object size under a constant
distribution, a uniform distribution, and an exponential
distribution, respectively, where U ¼ 1. For all distribu-
tions, the cost increases as the object size increases. Fig. 6a
compares the costs of the Push scheme, the Invalidation
scheme, and the proposed optimal adaptive CB scheme;

when the object size is small, the Push scheme is better than
the Invalidation scheme, and when object size is large, the
Invalidation scheme is better than the Push scheme. The
optimal adaptive scheme is the best scheme. Figs. 6b and 6c
compare costs with different Push thresholds and the
optimal Push threshold, and indicates that the optimal
threshold achieves the minimum cost.

5.3 Optimize Both Cache Size and Push Threshold
Simultaneously

In this section, we study optimizing both the cache size and
Push threshold simultaneously.

Fig. 7 shows costs over U when the object size follows
a constant distribution, a uniform distribution, and an
exponential distribution, respectively, where EðLÞ ¼ 10LInv
and T ¼ 5LInv. Under the parameters chosen, the cache size
K ¼M is almost the best, except that when U is large, the
no-cache scheme, the Fetch scheme, has a lower cost. As
shown in the figure, we observe that when U is large, the
cache should be disabled.

Fig. 8 compares the optimal cost with costs of the Push
scheme and the Invalidation scheme when the object size
follows a constant distribution, a uniform distribution, and
an exponential distribution, where EðLÞ ¼ 10LInv. The
optimal cost is obtained when both the cache size and
the Push threshold are optimized simultaneously. Fig. 8
indicates that the proposed scheme is the best among all the
schemes in term of cost.

Fig. 9 shows the optimal cache size (Optimal K) (the Push

threshold is also optimal) over U when the object size follows

a constant distribution, a uniform distribution, and an

exponential distribution. As illustrated from the figure,

whenEðLÞ ¼ LInv andEðLÞ ¼ 10LInv, the optimal K changes

from the maximum cache size (M = 70) directly into zero, i.e.,

the Fetch scheme. WhenEðLÞ ¼ 100LInv, we observe that the

optimal cache size changes slowly as U increases, and finally

becomes zero when U is large. From this figure, we can

conclude that the no-cache (Fetch) scheme is very important

and should be used when U is large.
Fig. 10 shows the optimal T (the cache size is also

optimal) over U when the object size follows a constant
distribution, a uniform distribution, and an exponential
distribution. As illustrated in the figures, the optimal T
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Fig. 4. Cost. (a) Cost versus L=Linv (Constant). (b) Cost versus T (Uniform). (c) Cost versus T (Exponential).

Fig. 5. TOptimal. (a) T versus U (Constant). (b) T versus U (Uniform). (c) T

versus U (Exponential).



(with an optimal K) increases first and then decreases as U

increases. The curve shapes in Fig. 10 are similar to those in

Fig. 5, i.e., the case when the optimal K is not considered.

From the figure, we observe that at some cases, there are no

optimal T values, since at those situations, the cache is

disabled and the Fetch scheme is used.

5.4 U-Threshold

Fig. 11 shows the U-threshold over E(L) when the object size
follows a constant distribution, a uniform distribution, and
an exponential distribution. As illustrated in the figure,
U-threshold increases as EðLÞ increases. U-threshold is
similar with different distributions of object sizes.
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Fig. 6. Cost. (a) Cost versus EðLÞ=Linv (Constant). (b) Cost versus EðLÞ=Linv (Uniform). (c) Cost versus EðLÞ=Linv (Exponential).

Fig. 7. Cost versus U with different K values. (a) Cost versus U (Constant). (b) Cost versus U (Uniform). (c) Cost versus U (Exponential).

Fig. 8. Optimal cost, costs of Push, and Invalidation versus U. (a) Cost versus U (Constant). (b) Cost versus U (Uniform). (c) Cost versus U

(Exponential).



5.5 Impact of the Size of N
In this section, we study the impact of the size of N . All
the parameters are the same as before except that
Fig. 12 has the following parameters: EðLÞ ¼ 120 and
Lreq ¼ Linv ¼ Lack ¼ 60, and Fig. 13 has the following
parameters: EðLÞ ¼ 300 and Lreq ¼ Linv ¼ Lack ¼ 30.

Figs. 12a, 12b, and 13 show the costs over the K/N ratio

with the different UAR values of the Invalidation scheme,

the Push, and the adaptive CB scheme, respectively. In the

adaptive CB scheme, the T -threshold is used and the cache is

not disabled. Furthermore, the uniform distribution and
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Fig. 9. Optimal K versus U (with Optimal T). (a) Cache size versus U (Constant). (b) Cache size versus U (Uniform). (c) Cache size versus U
(Exponential).

Fig. 10. Optimal T versus U (with Optimal K). (a) T/E(L) versus U (Constant). (b) T/E(L) versus U (Uniform). (c) T/E(L) versus U (Exponential).

Fig. 11. U-Threshold.

Fig. 12. Cost for invalidation and push. (a) Cost versus K/N (Invalida-

tion). (b) Cost versus K/N (Push).



exponential distribution of object sizes are shown in Figs. 13a

and 13b, respectively. From Figs. 12 and 13, we observe that

the costs are the same for different N values (either 40 or 80)

as long as the K/N ratios are the same. It is clearly shown in

Figs. 12 and 13 that when UAR is larger, the cost is larger. As

illustrated in the figures, in general, when the cache size

increases, the cost decreases; however, there are exceptions

when UAR is large. Therefore, a larger cache size does not

always mean a lower cost with a large UAR. When the cache

size reaches a threshold, increasing the cache size makes no

difference in terms of cost reduction.

5.6 A “Cutoff” Zipf-Like Update Distribution with
Different Update Ratios

In this section, we loosen the assumption that the object
updates have the same ratio, and we loosen the assumption
that the update process follows Poisson distribution.
Instead, we adopt a cutoff Zipf-like update distribution
[5], [17], [18], which is believed to be a realistic distribution.
The goal of this section is to see the performance of the the
proposed scheme when these assumptions are loosened.
When an update happens, the object Oi is chosen with a
given probability pk defined as

pk ¼ 1

,
k�

XN
j¼1

1

j�

 !" #
;

where � is called the Zipf ratio. In this paper, an update

event is generated with mean � ¼ � 	 UAR and � ¼ 1. In this

section, we let � ¼ 0:8.
Next, we explain how to use the U-threshold and

T -threshold in simulations when many assumptions are

loosened. The previous analytic models compute the

U-threshold and T -threshold with the assumption that UARs

of all objects are the same. We calculate the U-threshold and

T -threshold when given an object size and a UAR. There-

fore, we obtain a table (omitted), in which we can look up

the U-threshold and T -threshold given a frame size and a

UAR value. Items in the table can be used as points

(U-threshold, T -threshold) for the interpolation method to
obtain other points.

When we lose the assumptions that the UARs of objects
are the same and the object sizes are the same, there must
exist U-threshold and T -threshold as well. However, we will
show that using the U-threshold and T -threshold obtained
from the previous analytic models, the algorithm performs
quite well. In this case, for each object, we measure its object
size and UAR. We look up the values of the U and
T -thresholds from the table. If the object size and UAR not
found from the table, we can use a linear interpolation to
find an approximate one. As long as the table is dense
enough, the two thresholds will be precise enough. If the
measured UAR is larger than the U-threshold, the object will
not be cached. When the UAR is smaller than the
U-threshold, the corresponding T -threshold will be used to
determine whether the Push scheme or the Invalidation
scheme to be used.

Fig. 14 shows the cost for Invalidation and Push with
cutoff Zipf-like update distribution to study the effects of the
size of N. Fig. 14 has the following parameters: EðLÞ ¼ 120

and Lreq ¼ Linv ¼ Lack ¼ 60. Comparing Fig. 14 with Fig. 12,
we observe that with different update ratios and a cutoff
Zipf-like update distribution, the effect is almost the same.

The cutoff Zipf-like update distribution only provides
the update probabilities of different objects. However, when
the sizes of objects are not the same, we need to consider
how we define these probabilities to objects with different
sizes, i.e., how to assign the update rates to objects with
different sizes. For performance evaluation purpose, we
define the following two cases. We define SOFU as a case
that small objects are more frequently updated than large
objects, and define LOFU as a case that large objects are
more frequently updated than small objects. More specifi-
cally, we have the following steps.

. Calculate N Zipf-like probabilities pi; ði ¼ 1; . . . ; NÞ.
Note that with a large rank, the probability is smaller.
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Fig. 14. Cost for Invalidation and Push with cutoff Zipf-like update

distribution. (a) Cost versus K/N (Invalidation). (b) Cost versus K/N

(Push).

Fig. 13. Cost for the adaptive CB. (a) Cost versus K/N (Uniform). (b)

Cost versus K/N (Exponential).



. Generate N objects with the sizes following a
uniform/exponential distribution.

. Match the probabilities with the objects according to

their sizes. In other words, rank the objects so as to

match the probabilities. When SOFU is used, rank

the objects with the increasing order of the object

sizes. When LOFU is used, rank the objects with the
decreasing order of the object sizes.

Fig. 15 shows an example using SOFU and LOFU to
match probabilities to object sizes. The object sizes are
uniform distributed in 0; 2
EðLÞ½ � or exponential distrib-
uted with the mean EðLÞ, where N ¼ 100 and EðLÞ ¼ 300.

Figs. 16, 17, and 18 have the following parameters:
N ¼ 100, M ¼ 70, Lreq ¼ Linv ¼ Lack ¼ 30, and � ¼ 1:0.
Figs. 16, 17, and 18 correspond to Figs. 4, 7, and 8,
respectively, but with different update ratios for different
objects. Comparing these figures, we observe that Figs. 16,
17, and 18 exactly have the same effects as Figs. 4, 7, and 8,
respectively. In other words, under a Zipf-like distribution
with different update ratios, the conclusions obtained from
the previous sections are still valid. Fig. 16 shows that there
exists an optimal T threshold and SOFU has a smaller cost
than LOFU. Fig. 17 shows that the U threshold exists when
the second level adaptation. Fig. 18 shows optimization of
both T and U at the same time.

5.7 Loosen the Assumption that the Client Can Hold
K Objects Regardless of Object Sizes

In this section, we further loosen the assumption that a
client can hold K objects in its local cache regardless object
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Fig. 15. Ranking objects in SOFU and LOFU. (a) pi versus Size
(Uniform). (b) pi versus Size (Exponential).

Fig. 16. Cost with different update ratios. (a) Cost versus L=Linv (Constant). (b) Cost versus T (Uniform). (c) Cost versus T (Exponential).

Fig. 17. Cost versus U with different K values and different update ratios. (a) Cost versus U (Constant). (b) Cost versus U (Uniform-SOFU). (c) Cost
versus U (Exponential-SOFU).



sizes. The cache size is measured by bytes instead of

K objects. The maximum cache size is taken at 0.7 * total

length of all objects at the server. Since we use the LRU

replacement policy, we evict one or more objects as long as

there is enough free space in the cache to accommodate the

object being accessed. Fig. 19 is to redraw Fig. 18b and

Fig. 18c after loosening the assumption. Comparing Fig. 19

and Fig. 18, we observe that the similar results are obtained

as previous figures do.

6 CONCLUSIONS

In this paper, we propose an optimal callback with two-level
adaptation scheme for wireless data access. We analytically
model a cost function as the total traffic involved between a
server and an MT per data object access, and the optimal
T value and the optimal cache size are obtained to minimize
the cost function. An important threshold, calledU-threshold,
is defined as an update-to-access-ratio (UAR) value, beyond

which the object should not be cached. We study a constant
distribution, a uniform distribution, and an exponential
distribution for object sizes, and we have results as follows:

. Analytical results match simulation results exactly.

. The cost is minimized with an optimal cache size
and an optimal Push threshold.

. U-threshold increases as the UAR increases, and
U-threshold is an important threshold and concept.

. As object size increases, costs of all schemes increase.

. The optimal T (with an optimal increase) increases
first and then decreases as UAR increases

. For different distributions of object sizes, effects of
the proposed algorithm are almost similar.

. The impact of the size of N has been studied. We
observe that the costs are the same for different N
values as long as K/N ratios are the same. In
general, when the cache size increases, the cost
decreases; however, there are exceptions when UAR
is large. Therefore, a larger cache size does not
always mean a lower cost with a large UAR. When
the cache size reaches a threshold, increasing cache
size makes no difference in terms of cost reduction.

. In our simulations, we further loosened the assump-
tion that the update distribution is Poisson and
considered a cutoff Zipf-like update distribution
with different update ratios. The conclusion is that
similar results are still valid.

. At last, in our simulations, we further loosen the
assumption that a client can hold K objects in its
local cache regardless object sizes, and we observe
that the similar results are obtained.

In summary, the proposal for an adaptive access
mechanism demonstrates that it has better performance
than several traditional approaches and achieves the
optimal solutions.

APPENDIX A

DERIVATIONS OF (1)-(2)
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Fig. 18. Optimal cost, costs of Push and Invalidation versus U, with different update ratios. (a) Cost versus U (Constant). (b) Cost versus U (Uniform-

SOFU). (c) Cost versus U (Exponential-SOFU).

Fig. 19. Optimal cost, costs of Push and Invalidation versus U, with
different update ratios. (a) Cost versus U (Uniform-SOFU). (b) Cost
versus U (Exponential-SOFU).
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mþ1ð1� yÞn½ �
ðmþ 1Þdy þ ny

mþ1ð1� yÞn�1

ðmþ 1Þ ;

we have

ymð1� yÞn ¼
d ymþ1ð1� yÞn½ �
ðmþ 1Þdy þ ny

mþ1ð1� yÞn�1

ðmþ 1Þ

¼ d y
mþ1ð1� yÞn½ �
ðmþ 1Þdy þ

nd ymþ2ð1� yÞn�1
h i
ðmþ 1Þðmþ 2Þdy

þ nðn� 1Þymþ2ð1� yÞn�2

ðmþ 1Þðmþ 2Þ
¼ . . .

¼ d y
mþ1ð1� yÞn½ �
ðmþ 1Þdy þ

nd ymþ2ð1� yÞn�1
h i
ðmþ 1Þðmþ 2Þdy þ :::

þ n!m!d ymþnþ1½ �
ðmþ nþ 1Þ!dy :

ðA:1Þ

PPush

¼
XK�1

k¼0

ðN�1
k Þ

Z 1
�0¼0

�Pushð�0Þ½ �k 1� �Pushð�0Þ½ �N�k�1�e���0d�0

¼
XK�1

k¼0

ðN�1
k Þ

Z 1
�0¼0

1� e���0ð Þk e���0ð ÞN�k�1�e���0d�0

¼
XK�1

k¼0

ðN�1
k Þ

Z 1

x¼0

1� xð Þk xð ÞN�k�1dx; let x ¼e���0 ! d�0

¼ � 1

�x
dx

¼
XK�1

k¼0

ðN�1
k Þ

Z 1

x¼0

(
d xkþ1ð1� xÞN�k�1
h i
ðkþ 1Þdx

þ
ðN � k� 1Þd xkþ2ð1� xÞN�k�2

h i
ðkþ 1Þðkþ 2Þdx þ . . .

þ
k! N � k� 1ð Þ!d xN

� �
N!dx

dx

)
; by ðA:1Þ

¼
XK�1

k¼0

ðN � 1Þ!
k!ðN � k� 1Þ!

k! N � k� 1ð Þ!
N!

¼ K
N
:
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PInv

¼
XK�1

k¼0

ðN�1
k Þ

Z 1
�0¼0

�Invð�0Þ½ �k 1� �Invð�0Þ½ �N�k�1�e� �þ�ð Þ�0d�0

¼
XK�1

k¼0

ðN�1
k Þ

Z 1
�0¼0

�

�þ � 1� e�ð�þ�Þ�0

	 
� �k

1� �

�þ � 1� e�ð�þ�Þ�0

	 
� �N�k�1

�e� �þ�ð Þ�0d�0

¼
XK�1

k¼0

ðN�1
k Þ

Z 1

x¼0

�

�þ � 1� xð Þ
� �k

1� �

�þ � 1� xð Þ
� �N�k�1

�

�þ � dx; Let x ¼ e�ð�þ�Þ�0 ! d�0 ¼
�dx
ð�þ �Þx

¼
XK�1

k¼0

ðN�1
k Þ

Z �
�þ�

y¼0

ykð1� yÞN�k�1dy;

Let y ¼ �

�þ � 1� xð Þ ! dx ¼ ��þ �
�

dy

¼
XK�1

k¼0

ðN�1
k Þ

Z �
�þ�

y¼0

d ykþ1ð1� yÞN�k�1
h i
ðkþ 1Þdy þ

N � k� 1ð Þd ykþ2ð1� yÞN�k�2
h i

ðkþ 1Þðkþ 2Þdy þ . . .

þ
N � k� 1ð Þ!k!d yN

� �
N!dy

dy; by ðA:1Þ

¼
XK�1

k¼0

ðN � 1Þ!
k!ðN � k� 1Þ!

(
ykþ1ð1� yÞN�k�1

ðkþ 1Þ þ

N � k� 1ð Þykþ2ð1� yÞN�k�2

ðkþ 1Þðkþ 2Þ þ . . .þ N � k� 1ð Þ!k!yN

N!

)�����
y¼ �

�þ�

¼
XK�1

k¼0

(
ðN � 1Þ!ykþ1ð1� yÞN�k�1

k!ðN � k� 1Þ! kþ 1ð Þ þ

ðN � 1Þ!ykþ2ð1� yÞN�k�2

ðkþ 1Þ!ðN � k� 2Þ! kþ 2ð Þ þ . . .þ N � 1ð Þ!yN
ðN � 1Þ!N

)�����
y¼ �

�þ�

¼
XK�1

k¼0

XN�k
h¼1

ðN�1
kþh�1Þ

ð1� yÞN�k�hykþh
kþ hð Þ

( )�����
y¼ �

�þ�

¼
XK�1

k¼0

XN�k
h¼1

ðN�1
kþh�1Þ

�N�k�h�kþh

kþ hð Þ �þ �ð ÞN

" #

¼
XK�1

k¼0

XN
n¼kþ1

ðN�1
n�1 Þ

�N�n�n

n �þ �ð ÞN

" #
; let n ¼ hþ k

¼
XK�1

k¼0

XN
n¼kþ1

ðN � 1Þ!
ðn� 1Þ!ðN � nÞ!

�N�n�n

n �þ �ð ÞN

" #

¼

PK�1

k¼0

PN
n¼kþ1

ðNn Þ�N�n�n

N �þ �ð ÞN

¼

PK�1

k¼0

PN
n¼kþ1

ðNn ÞUN�n

N 1þ Uð ÞN
:

APPENDIX C

PROOF OF LEMMA 1

lim
U!1

PK�1

k¼0

PN
n¼kþ1

ðNn ÞUN�n

N 1þUð ÞN

¼ lim
U!1

PK�1

k¼0

ðNkþ1ÞUN�ðkþ1Þ

NUN ¼ lim
U!1

ðN1 ÞUN�1

NUN ¼ 0:

lim
U!1

TOptimal ¼ lim
U!1

LInv U þ K
N

� �.
U � K

N

� �
¼ LInv:

TOptimal � LInv:

, U �

PK�1

k¼0

PN
n¼kþ1

ðNn ÞUN�n

N 1þUð ÞN þ K
N

� U þ

PK�1

k¼0

PN
n¼kþ1

ðNn ÞUN�n

N 1þUð ÞN � K
N :

,

PK�1

k¼0

PN
n¼kþ1

ðNn ÞUN�n

1þUð ÞN � K:

,
PK�1

k¼0

PN
n¼kþ1

ðNn ÞUN�n � K
PN
n¼0

ðNn ÞUN�n:

,
PK�1

k¼0

PN
n¼kþ1

ðNn ÞUN�n �
PK�1

k¼0

PN
n¼0

ðNn ÞUN�n:

,
PK�1

k¼0

PN
n¼0

ðNn ÞUN�n �
PN

n¼kþ1

ðNn ÞUN�n

" #
� 0:

It is obvious that the last inequality is true. tu
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APPENDIX D

DERIVATION OF (32)

@CAdpative�CB
@T

¼ � @AðT Þ
@T � �e��TBðT Þ þ e��T

@BðT Þ
@T

h i
LReq þ 1

�

	 

þ U

�
��LInve��T þ �e��T 1

� � Te��T � 1
� e
��T

	 


þ �e��T þ �Te��T þ e��T
� �


1� e��T
��

¼
�
� @AðT Þ

@T � �e��TBðT Þ þ e��T
@BðT Þ
@T

�
LReq þ 1

�

	 


þ U
�
��LInve��T þ 1

� �e
��T � Te��T�e��T

� 1
� e
��T�e��T þ �Te��T � �Te��T e��T

�

¼ � @AðT Þ
@T � �e��TBðT Þ þ e��T

@BðT Þ
@T

h i

LReq þ 1

�

�

þ U
�
��LInve��T þ e��T � Te�2�T � 1

� e
�2�T

þ �Te��T � �Te�2�T

�
:
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