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Primate-Inspired Communication Methods for Mobile and Static
Sensors and RFID Tags

YANG XIAO, YANPING ZHANG, and XIANNUAN LIANG, The University of Alabama

Although previous bio-inspired models have concentrated on invertebrates, such as ants, mammals, such
as primates with higher cognitive function, are valuable for modeling the increasingly complex problems
in engineering. Understanding primates’ social and communication systems and applying what is learned
from them to engineering domains will likely lead to solutions to a number of problems. Scent-marking is
an important behavior among primates and many other mammals. In this article, inspired by primates’
scent-marking activity, we propose and study a collaboration strategy for mobile and static sensors with
RFID tags, where mobile sensors can be treated as robots or mobile actuators and can leave information to
direct others to find them. Mobile sensors are equipped with RFID tags (or sensors) that can be deployed
whenever needed, and RFID tags (or sensors) carry related information for other robots to pick up. We
propose several primate-inspired communication mechanisms, including delayed-and-relayed and scent-
trail communication among robots. We analytically model and simulate scent-trail communication. We
also study a tracking and pursuing scheme of mobile sensors using simulations in terms of robot speeds,
searching function, deployment density, turning function, and so on. We assume that robots (mobile sensors
or mobile actuators) are capable of deploying/throwing-out sensors/RFID tags.
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1. INTRODUCTION

Primates such as coppery titi monkeys engage in both vocal and chemical communi-
cations (scent-marking) in which pheromone traces are left to relay messages to other
animals [Snowdon et al. 1985]. This species provides an excellent example of commu-
nication. Although previous bio-inspired models have concentrated on invertebrates,
such as ants, mammals with higher cognitive function are valuable for modeling the
increasingly complex problems in heterogeneous mobile and static sensor networks.
In this work, we propose to study and model communication modes of the coppery titi
monkeys and to apply the results to communications for collaborations in the distrib-
uted control of heterogeneous mobile and static sensor networks.
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Animals have inspired many inventions that help human beings. Examples of such
inventions include radar, which is manufactured according to the principle of how bats
identify directions, airplanes, which were invented based on dragonfly wings, and sub-
marines, which are applied in the military based on the physical structure of fish.
People can always learn something practical from the physiological characteristics of
animals and adopt them for their own use.

Scent-marking [Lewis 2006] is an important communication behavior of many dif-
ferent mammals, especially primates. Through scent-marking, primates leave infor-
mation demonstrating their purpose, showing their aggression, and establishing and
maintaining their social rank [Lewis 2006]. Inspired by scent-marking, we propose a
collaboration strategy in mobile and static sensor networks with RFID tags.

In wireless sensor networks, two kinds of sensor nodes are important for study:
static and mobile sensors. After deployment, static sensors can only passively sense
and collect data from the environment [Abrams et al. 2004; Amundson et al. 2011;
Arienzo and Longo 2011; Azad and Chockalingam 2011; Boubiche and Bilami 2011;
Brass 2007; Gupta et al. 2003; Jaggi and Kar 2011; Jedermann et al. 2011; Kafetzoglou
and Papavassiliou 2011; Krontiris and Dimitriou 2011; Li 2011; Liu et al. 2006; Lu
and Suda 2007; Lu et al. 2011; Majumdar and Ward 2011; Miao et al. 2005; Morreale
et al. 2011; Olteanu et al. 2010; Peng et al. 2009; Poornima and Amberker 2011; Rao
and Kesidis 2004; Shakkottai et al. 2003; Shen et al. 2011; Soliman and Al-Otaibi
2011; Taniguchi et al. 2011; Tran et al. 2011; Tseng et al. 2011; Wang and Xiao 2006;
Wodczak 2011; Wu et al. 2005; Xiao et al. 2010]. On the other hand, mobile sensors are
resource-rich sensor nodes with more energy, higher power, and better processing ca-
pabilities. All these features give mobile sensors more capabilities, such as more com-
putation and storage, which help to make decisions and execute appropriate actions
according to the information gathered from sensors. There is a vast amount of liter-
ature on multirobot collaboration and surveillance [Dias and Stentz 2000; Simmons
et al. 2000; Yamauchi 1998; Zlot et al. 2002]. A detailed survey of animal behavior on
scent-marking and social behavior can be found in Zhang et al. [2009].

In our study, robots function as mobile sensors that patrol the entire network, com-
municate with sensors, collect information from sensors, and when necessary, leave
RFID tags or sensors to convey data for other robots to pick up. For some collaboration
work, robots can leave RFID tags or sensors, a behavior very similar to the communi-
cation of primates using scent-marking.

In this article, inspired by the primates’ scent-marking activity, we propose primate-
inspired message-based communications. We propose delayed-and-relayed and scent-
trail approaches to achieve mobile and static sensor communications. Both approaches
are very similar to pheromone traces left by New World monkeys. For bio-inspired
message communication based on pheromonal information trails, we design ways to
relay messages to static sensor nodes, including delayed-and-relayed and scent-trail
communication. Robots (mobile sensors or mobile actuators) can also communicate
and collaborate with each other. A single robot is only capable of achieving simple
targets. Once robots meet some complicated task, they need to communicate with
other robots and collaborate to complete it. In this situation, the former robots need to
leave as many RFID tags as needed for other robots to catch up. When the pursuing
robots meet RFID tags, they track these to find the route of the former robots. In
this article, we analytically model and simulate scent-trail communication. In our
analytical model, we solve the following problems.

— What is the probability that the second robot can capture the first robot?
— What is the conditional expected time that the second robot takes to capture the

first robot with the condition that the second robot can capture the first robot?
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— What is the conditional expected distance required for the second robot to capture
the first robot?

— What is the conditional number of RFID tags that the first robot must drop in order
for the second robot to be able to capture the first.

We propose and study a collaboration strategy for mobile and static sensors with
RFID tags, where mobile sensors can be treated as robots or mobile actuators and can
leave information to direct others to find them. Mobile sensors are equipped with RFID
tags (or sensors) that can be deployed whenever needed, and RFID tags (or sensors)
carry related information for other robots to pick up. We also study a tracking and
pursuing scheme of mobile sensors using simulated robot speeds, searching functions,
deployment densities, turning functions, and so on. We study two cases, with and
without considering the lifetime of sensors and RFID tags. We study the following
problems in the scent-marking scheme:

— the performance of, (a) the minimum requirement of a follower robot, the maximum
requirement of the first robot, (b) the delay time for a follower robot to catch up to
the first robot, and (c) the catch probability;

— the performance of delay with the speed of the follower robot;
— the performance of delay with the speed of the first robot;
— the probability that the follower robot catches up to the first robot, and so on.

The rest of the article is organized as follows. Section 2 presents some background
information including a brief survey of scent-marking activities among primates, op-
timal forging theory versus our approaches, and other related work. Section 3 pro-
poses primate-inspired communication methods. Section 4 gives an analytical model
for the scent-trail mechanism. Section 5 presents evaluations for the analytical model
of the scent-trail mechanism. Section 6 provides further analysis of primate-inspired
scent-marking strategy. Sections 7 and 8 provide simulation results with and without
consideration of the lifetime of sensors and RFID tags, respectively. Section 9 provides
future research directions. Finally, we conclude the article in Section 10.

2. BACKGROUND

In this section, we provide some background information including a brief survey of
scent-marking activities among primates, optimal forging theory vs. our approaches,
and other related work.

2.1. A Brief Review of Scent-Marking of Primates

Scent-marking1 is an important activity among primates, which is accomplished by
deploying chemicals with irritating odors, such as urine, at prominent locations. In
recent years, there has been a great deal of research on primate society, communica-
tion, sexuality, and so on. All these studies are closely related to the scent-marking
behavior of primates. As mentioned in Lewis [2006], scent-marking of primates falls
under one or more of the following five categories: territorial demarcation, ownership
of resources, mate attraction, noncombative fighting, and self-advertisement. In
Dixson and Brancoft [1998] and Smuts et al. [1987], primate sexuality is studied

1http://en.wikipedia.org/wiki/Scent-marking
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in depth The studies show that indirect communication by means of scent-marking
plays the most important role in the social and sexual behaviors of primates. In
Smuts et al. [1987], primate society is studied and scent-marking is shown as a sign
of the boundary of a territory, of defense, of alarm, and of individual recognition.
It is also proposed in Snowdon et al. [1985] that scent and scent-marking behavior
appear to be important in many areas of primate life, especially in communication.
Scent and scent-marking are even used to demonstrate aggressive motivation and the
establishment and maintenance of high social rank.

Scent-marking [Fiorie et al. 2006] (or olfactory signaling) is commonly used among
mammals for communication both within and between social groups. Scent marks
are regarded as a way of conveying information not only about individual identity,
group membership, and sex, but also about social rank and reproductive state [Fiorie
et al. 2006]. The active compounds in these marks that convey the effective informa-
tion about the signaler will remain volatile for a relatively long period [Fiorie et al.
2006]. Furthermore, the signaler is capable of sharing its information without being
present.

There have already been a number of nonexclusive hypotheses concerning the func-
tions of scent-marking in primates, most of which fall into three basic categories [Fiorie
et al. 2006]. First, scent-marking functions in a variety of sociosexual and reproductive
contexts, both within and between groups [Fiorie et al. 2006]. Such functions include
both intersex and intrasex purposes (such as advertising a signaler’s sexual status or
receptivity to members of the opposite sex), advertising or reinforcing a signaler’s dom-
inance over same-sexed conspecifics, competing with same-sexed individuals for repro-
ductive opportunities, and attracting opposite-sexed individuals [Fiorie et al. 2006].
Second, scent-marking may demonstrate the signaler’s ownership, occupancy, or use
of an area, and has thus been proposed as a potentially efficient means of defending
a territory or home range [Fiorie et al. 2006]. Finally, it was recently suggested that
scent-marking may have other functions in intragroup communication that are related
to ecological information, such as aiding the orientation of group members within the
home range or demonstrating the locations of food sources to group mates [Fiorie et al.
2006].

So far, most of the studies related to scent-marking in primates have been focused
on the callitrichines [Fiorie et al. 2006]. Such behavior comprises a rich part of their
behavioral repertoire, and some researchers believe that callitrichine scent-marking
serves several of the functions discussed in the preceding in different ecological and
social environments [Fiorie et al. 2006]. In the case of golden lion tamarins, their
scent-marking activities are more frequently on feeding trees than nonfeeding trees
and marks are more frequently deposited by dominant males than subordinate males
[Fiorie et al. 2006]. This not only suggests that these signals communicate the location
of important food sources to group mates, but that they also communicate male social
status [Fiorie et al. 2006]. In several species of Amazonian tamarins (Saguinus spp.)
and common marmosets (Callithrix jacchus) [Fiorie et al. 2006], pheromones are often
detected in the scent marks of dominant females and appear to be important cues that
prompt physiological suppression of reproductive cycles in subordinates [Fiorie et al.
2006].

Some studies reported that scent-marking is more frequently discovered in periph-
eral areas or in regions of home-range overlap than in the interior portions of the range
or areas of exclusive use [Fiorie et al. 2006]. Some researchers have also found that
there is no distinct difference in scent-marking rates in these various environments
[Fiorie et al. 2006]. In addition to the callitrichines, scent-marking behavior in anthro-
poids is also a research focus [Fiorie et al. 2006]. This is true for many other remaining
New World monkeys, except that many of them have well developed skin glands on the
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sternum and perineum and routinely engage in a variety of scent-marking behaviors
[Fiorie et al. 2006].

Within large-bodied individuals, scent-marking appears to be relatively common
[Fiorie et al. 2006], although few related studies have been conducted.

2.2. Optimal Foraging Theory (OFT) vs. Our Approaches

Foraging is searching for food.2 Foraging theory studies the relative payoffs of different
foraging alternatives. Optimal Foraging Theory (OFT) maximizes the energy intake
per unit of time. OFT normally either achieves the greatest amount of energy possible
in a given environment or requires the least possible amount of time for a fixed amount
of energy.3

Inspired by OFT, we have designed robot patrolling schemes to handle events in a
surveillance area. Robots travel around the monitored area to handle detected events
in a wireless sensor network. Each event has a priority, which is very similar to the
calories contained in a prey in OFT. Similar to the foraging activities of animals, ro-
bots patrol the surveillance area to handle events. As in the different optimal consid-
erations in the OFT problem, robots are designed to be able to choose from different
patrolling paths, that may target high priority events, as large a number of events as
possible, or more high priority events per unit of time. The choice of paths is based on
the target of the surveillance system.

2.3. Other Related Work

Much research has focused on sensor networks in which a large number of sensor
nodes is densely deployed over a region [Abrams et al. 2004; Brass 2007; Liu et al.
2006; Wu et al. 2005]. A number of studies focus on network coverage. In Brass [2007],
the coverage capability of the network is studied with sensor nodes deployed regularly,
or with Poisson distribution with the assumption that there are countless sensor nodes
that can be deployed all over the region. Recently, the joint problem of coverage and
connectivity was considered [Gupta et al. 2003; Liu et al. 2006; Shakkottai et al. 2003].
Meanwhile, many research efforts have also focused on surveillance applications for
sensor networks with static and mobile sensors [Lu and Suda 2007; Miao et al. 2005;
Rao and Kesidis 2004]. The deployment problem in mobile sensor networks is studied
in Miao et al. [2005], including the optimal placement of mobile sensor networks
and their self-organizable deployment. In Rao and Kesidis [2004], the Enhanced
Differentiated Surveillance scheme is proposed, to maintain a required coverage
while saving energy. In Rao and Kesidis [2004], a mobile algorithm is developed and
surveillance in mobile sensor networks is studied. All of these studies consider the
mobility feature of the sensor network as well as the surveillance application. There
is a vast amount of literature about multirobot collaboration and surveillance [Dias
and Stentz 2000; Simmons et al. 2000; Yamauchi 1998; Zlot et al. 2002]. A detailed
survey of animal behaviors on scent marking and social behaviors can be found in
Zhang et al. [2009]. There are other related works in Xiao and Zhang [2009, 2011a,
2011b], Zhang and Xiao [2009a, 2009b], and Xiao and Liang [2009].

2http://wikipedia.org/wiki/Optimal foraging theory
3http://www.thewildclassroom.com/biodiversity/birds/aviantopics/optimalforagingtheory.html
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Fig. 1. Bio-inspired communications.

3. PRIMATE-INSPIRED COMMUNICATION METHODS

Bio-inspired communication mechanisms are now proposed as follows. Typically, chem-
icals can be left by animals on food and sleeping sites to mark scent trails. An animal
can leave a scent-trail to help others locate the food source. Inspired by these scent-
trails, we propose two bio-inspired communication approaches: delayed-and-relayed
and scent-trail, as shown in Figures 1(a) and 1(c), respectively. Both methods are in-
spired by animal scent-trails. Delayed-and-relayed is used to leave a message for a
sensor node or to leave a sensor node/RFID-tag to be picked up by other robots at a
later time. Scent-trail leaves a tail of sensor nodes/RFID-tags to let other robots know
the route of this robot, if necessary, and is used when the route of this robot cannot
be known beforehand and the delayed-and-relayed approach cannot achieve its goal,
and when a route/trail cannot be expressed well enough to leave it as a message. We
can use sensor nodes to hold messages to be picked up at a later time. A robot can
also leave one or multiple sensor nodes/RFID-tags on the ground to form a pheromone
trace/trail to help relay messages in large and complex areas. If there are sensor nodes
available, a trail can also be achieved by leaving messages for passing sensor nodes.
Another function of robots is sending danger alerts. Once serious events, such as for-
est fires, chemical weapons, bombs, or other incidents, are detected, robots need to
warn other robots of the danger. They deploy RFID tags to blockade the event area, as
shown in Figure 1(b). If other robots patrol nearby, they will know the danger and stop
to help with the blockade work. They may either wait until humans come to handle
the events or for human commands.

After robots pick up a message, the related memory space is released. We assume
that such messages are encrypted and that only authorized robots can decrypt these
messages.

Robots may communicate with each other when they meet or are within each
other’s range. We assume that the surveillance area is so large that central control
of robots is impossible. Robots are distributed and do their own jobs. Therefore, ro-
bots may or may not communicate with each other. In our surveillance framework,
we assume robots communicate with each other using the following three methods.
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(1) When two robots meet, they exchange their information and update their own
information to themselves. They function as mobile sinks—each maintains partial in-
formation, which is updated through communications. (2) Robots can use these bio-
inspired approaches to communicate. (3) When robots detect some emergency, such
as a forest fire, chemical bomb, or intrusion tank, robots can send emergency mes-
sages to sensor nodes and sinks; then each message is broadcast to other robots
in the network. However, this method is only used in emergencies. All three meth-
ods help robots exchange information, balance their loads, and update their own
information.

4. ANALYTICAL MODEL FOR PRIMATE-INSPIRED SCENT-TRAIL COMMUNICATION

In this section, we propose an analytical model for the scent-trail mechanism.
We assume that R1 and R2 are two robots. R2 is tracking R1 in a road. R1 and R2

move at constant velocities of V1 and V2, respectively. Initially, R1 is D0 units ahead
of R2. R1 is expected to drop at most N signals called RFID tags, randomly when it
moves. Initially, R1 drops the first RFID tag; we denote it as F0. The arbitrary distance
between two adjacent RFID tags is subject to an exponential distribution with mean
1
/
λ. R2 captures R1 by tracking the RFID tags. We now denote the ith RFID as Fi−1,

0 ≤ i ≤ N−1; the distance between Fi−1 and Fi is denoted as Di. Here, D1, D2, ..., DN−1
are independent and have the same exponential distribution with mean 1

/
λ. We make

two assumptions: (1) R2 is sure to find the RFID tags; the time interval between the
instant it finds Fi−1 and the instant that it finds Fi is denoted as Ti, 1 ≤ i ≤ N − 1, and
the time R2 spends to find F0 is T0. The expression of Ti is as follows: Ti = G(V2, Di), if
there is no turn in the path between Fi−1 and Fi and otherwise Ti = H(V2, Di), if there
is any turn in the path between Fi−1 and Fi. Here, we assume that the probability of
there being no turn in the path between Fi−1 and Fi is P0. Here G and H have the
following property: G(v1, d) ≤ d

/
v2 and H(v1, d) ≤ d

/
v2 for any pair of v1 and v2 which

satisfy v1 ≥ v2 > 0 and any d, d > 0. (2) R2 can capture R1 if and only if R2 can capture
R1 before R2 finds the Nth RFID tag. We will solve the following problems.

— Problem 1. What is the probability that R2 captures R1?
— Problem 2. What is the expected time that R2 takes to capture R1, under the

condition that R2 can capture R1, where we denote the conditional expected time
as T?

— Problem 3. What is the expected distance R2 travels to capture R1?
— Problem 4. How many RFID tags will R1 drop, under the condition that R2 can

capture R1?

Before we discuss these problems, we denote the probability that R2 can capture R1
as P. Then the probability that R2 can not capture R1 is 1 − P.

For Problem 1, we first denote the time from the beginning to the instant that R1

drops Fi as ti and the time from the beginning to the instant that R2 finds Fi as Ti. We
then have

ti =
1

V1

i∑
j=1

D j, i = 1, ..., n − 1.

Ti =
i∑

j=0

T j, i = 1, ..., n − 1.
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We can make the following statement.

R2 can capture R1 if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R2 can capture R1 between F0 and F1; or
R2 can capture R1 between F1 and F2,

but cannot capture R1 between F0 and F1; or
...

R2 can capture R1 between Fi−1 and Fi,

but cannot capture R1 between F0 and Fi−1; or
...

R2 can capture R1 between Fn−1 and Fn,

but cannot capture R1 between F0 and Fn−1.

(1)

Namely, R2 cannot capture R1 if and only if R2 cannot capture R1 between F0
and Fn.

We can say that

R2 cannot capture R1

�⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T1 =
1∑

j=0
T j > t1 = D1

V1

T2 =
2∑

j=0
T j > t2 = 1

V1

2∑
j=1

D j

...

TN−1 =
N−1∑
j=0

T j > tN−1 = 1
V1

N−1∑
j=1

D j.

We now bring in a variable Ui, wherei = 1, 2, ..., N − 1, to indicate whether there is
any turn between Fi−1 and Fi. Ui has two values: 0 and 1. If there is any turn between
Fi−1 and Fi, Ui = 1; otherwise, Ui = 0. Thus, there are permutations of the values of Ui.
The ith element of a permutation is the value of Ui. We define a variable M, the values
of which are the possible permutations. There are 2N−1 different permutations, so M
has 2N−1 different values. Since Ui affects the expression of Ti, if we want to calculate
1 − P, we should divide the capture into 2N−1 different subcases. As an example of
calculating the subcases, we now calculate the probability of the case that R2 cannot
capture R1 and the permutation is (0, 0, . . . , 0), the probability of which we denote as
p0. Also, we denote the probabilities that R2 cannot capture R1 in the other subcases
as p1, . . . , p2N−1−1. We then have

p0 = Pr ob{R2 cannot capture R1, M = (0, 0, ..., 0)}
= Pr ob{R2 cannot capture R1|M = (0, 0, ..., 0)} · Pr ob{M = (0, 0, ..., 0)} (2)

Pr ob{M = (0, 0, ..., 0)}
=(P0)N−1 (3)
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Pr ob{R2 cannot capture R1|M = (0, 0, ..., 0)}
= Pr ob{T1 > t1, T2 > t2, ...TN−1 > tN−1|M = (0, 0, ..., 0)}
= Pr ob{

1∑
j=0

G(V2, D j) > t1,
2∑

j=0
G(V2, D j) > 1

V1

2∑
j=1

D j, ...
N−1∑
j=0

G(V2, D j) j > 1
V1

N−1∑
j=1

D j}

=
�

T1 >t1, T2 >t2 , ...

TN−1 >tN−1

λN−1 · e
−λ(

N−1∑
j=1

D j)
dD1...dDN−1.

(4)

Here Ti =
i∑

j=0
G(V2, D j), ti = 1

V1

i∑
j=1

D j, i = 1, ..., N − 1.

Then from (3) and (4) we have

p0 = Pr ob{R2 cannot capture R1, M = (0, 0, ..., 0)}

=(P0)N−1 · �
T1 >t1, T2 >t2, ...

TN−1 >tN−1

λN−1 · e
−λ(

N−1∑
j=1

D j)
dD1...dDN−1. (5)

Here Ti =
i∑

j=0
G(V2, D j), ti = 1

V1

i∑
j=1

D j, i = 1, ..., N − 1.

Similar to (5), we can calculate p1,. . . , p2N−1−1. Then 1 − P = p0 + p1 + ... + p2N−1−1.
We continue our derivation in Problem 2. Note that if we only calculate the expected

time for R2 to capture R1 by tracking the RFID tags, we cannot obtain an accurate
expected time, but only its upper and lower bounds.

From the preceding discussion, we can rephrase (1) as

R2 can capture R1

�⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

T1 ≤ t1; or
T1 > t1, T2 ≤ t2; or
...

T1 > t1, T2 > t2, ..., Ti−1 > ti−1, Ti ≤ ti; or
...
T1 > t1, T2 > t2, ..., TN−2 > tN−2, TN−1 ≤ tN−1.

(6)

Here, we know that the N − 1 events in (6) are mutually exclusive. Also from the
discussion of Ui, i = 1, 2, ..., N − 1. Similarly, we should consider 2N−1 subcases in
order to calculate the upper (denoted as Tu) and lower (denoted as Tl) bounds of the
conditional expected time that R2 takes to capture R1.

As an example, in order to calculate Tu and Tl, we now consider the subcase in which
R2 can capture R1and the permutation is (0, 0, . . . , 0). We denote the upper and lower
bounds of the conditional capture time as T0

u and T0
l , respectively. We also denote
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the upper and lower bounds of the conditional capture time in the other subcases as
T1

u,. . . T2N−1−1
u , and T1

l ,. . . T2N−1−1
l , respectively. We then have

T0
u = (P0)N−1 · 1

P · �
T1≤t1

λN−1(
1∑

j=0
T j) · e

−λ(
N−1∑
j=1

D j)
dD1...dDN−1

+(P0)N−1 · 1
P · �

T1>t1,T2≤t2

λN−1(
2∑

j=0
T j) · e

−λ(
N−1∑
j=1

D j)
dD1...dDN−1

+....

+(P0)N−1 · 1
P · �

T1 >t1 , T2 >t2, ...

Ti−1 >ti−1, Ti ≤ ti

λN−1(
i∑

j=0
T j) · e

−λ(
N−1∑
j=1

D j)
dD1...dDN−1

+...

+(P0)N−1 · 1
P · �

T1 >t1 , T2 >t2, ...

TN−1 ≤ tN−1

λN−1(
N−1∑
j=0

T j) · e
−λ(

N−1∑
j=1

D j)
dD1...dDN−1

(7)

T0
l = (P0)N−1 · 1

P · �
T1≤t1

λN−1T0 · e
−λ(

N−1∑
j=1

D j)
dD1...dDN−1

+(P0)N−1 · 1
P · �

T1>t1,T2≤t2

λN−1(
1∑

j=0
T j) · e

−λ(
N−1∑
j=1

D j)
dD1...dDN−1

+....

+(P0)N−1 · 1
P · �

T1 >t1, T2 >t2 , ...

Ti−1 >ti−1, Ti≤ ti

λN−1(
i−1∑
j=0

T j) · e
−λ(

N−1∑
j=1

D j)
dD1...dDN−1

+...

+(P0)N−1 · 1
P · �

T1 >t1, T2 >t2 , ...

TN−1 ≤ tN−1

λN−1(
N−2∑
j=0

T j) · e
−λ(

N−1∑
j=1

D j)
dD1...dDN−1.

(8)

Here Ti =
i∑

j=0
G(V2, D j), ti = 1

V1

i∑
j=1

D j, i = 1, ..., N − 1, and
i∑

j=0
T j =

i∑
j=0

G(V2, D j), i =

1, ..., N − 1.

As with the T0
uand T0

l , we can obtain T1
u,. . . T2N−1

u , and T1
l ,. . . T2N−1

l . Then we have

Tu =
2N−1−1∑

j=0
T j

u and Tl =
2N−1−1∑

j=0
T j

l .

Now we solve Problem 3. As in the discussion of the conditional expected time for
R2 to capture R1, assuming that it can capture R1, we cannot obtain the conditional
accurate length of the path that R2 takes to capture R1 but only the upper and lower
bounds.

From the discussion of Ui, in which i = 1, 2, ..., N − 1, in order to calculate the upper
(denoted as Du) and lower (denoted as Dl) bounds of the conditional expected length
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of the path that R2 follows to capture R1, we should consider 2N−1 different subcases.
As an example, to calculate the upper and lower bounds, we now consider the upper
and lower bounds of the conditional moving lengths of the path of R2 in the subcase
in which R2 can capture R1 and the permutation is (0, 0, . . . , 0). We denote the upper
and lower bounds of the conditional capture moving length of the path in that case
as D0

u and D0
l , respectively. Also, we denote the upper and lower bounds of the condi-

tional capture moving lengths of the path in the other subcases as D1
u,. . . D2N−1−1

u and
D1

l ,. . . D2N−1−1
l , respectively. Then we have

D0
u = (P0)N−1 · 1

P · �
T1≤t1

λN−1(
1∑

j=0
D j) · e

−λ(
N−1∑
j=1

D j)
dD1...dDN−1

+(P0)N−1 · 1
P · �

T1>t1,T2≤t2

λN−1(
2∑

j=0
D j) · e

−λ(
N−1∑
j=1

D j)
dD1...dDN−1

+....

+(P0)N−1 · 1
P · �

T1 >t1, T2 >t2, ...

Ti−1 >ti−1, Ti ≤ ti

λN−1(
i∑

j=0
D j) · e

−λ(
N−1∑
j=1

D j)
dD1...dDN−1

+...

+(P0)N−1 · 1
P · �

T1 >t1, T2 >t2, ...

TN−2 ≤ tN−2

TN−1 ≤ tN−1

λN−1(
N−1∑
j=0

D j) · e
−λ(

N−1∑
j=1

D j)
dD1...dDN−1

(9)

D0
l = (P0)N−1 · 1

P · �
T1≤t1

λN−1(D0) · e
−λ(

N−1∑
j=1

D j)
dD1...dDN−1

+(P0)N−1 · 1
P · �

T1>t1,T2≤t2

λN−1(
1∑

j=0
D j) · e

−λ(
N−1∑
j=1

D j)
dD1...dDN−1

+....

+(P0)N−1 · 1
P · �

T1 >t1, T2 >t2, ...

Ti−1 >ti−1, Ti ≤ ti

λN−1(
i−1∑
j=0

D j) · e
−λ(

N−1∑
j=1

D j)
dD1...dDN−1

+...

+(P0)N−1 · 1
P · �

T1 >t1, T2 >t2, ...

T N−2 ≤ tN−2

T N−1 ≤ tN−1

λN−1(
N−2∑
j=0

D j) · e
−λ(

N−1∑
j=1

D j)
dD1...dDN−1.

(10)

Here , Ti =
i∑

j=0
G(V2, D j), ti = 1

V1

i∑
j=1

D j, i = 1, ..., N − 1.

Then, similar to (9) and (10), we can calculate D1
u,. . . D2N−1−1

u and D1
l ,. . . D2N−1−1

l .

Then we have Du =
2N−1−1∑

j=0
D j

u and Dl =
2N−1−1∑

j=0
D j

l . We have now solved Problem 3.
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We now solve Problem 4. By focusing on only the RFID tags, we cannot obtain
an accurate number of RFID tags that R1 drops in the case that R2 can capture R1.
But we can obtain the upper (denoted as Nu) and lower (denoted as Nl) bounds of the
conditional number.

Based on Ui, where i = 1, 2, ..., N − 1, we can obtain Nu and Nl by considering
2Nsubcases. For example, we consider the subcase in which R2 can capture R1 and
the permutation is (0, 0, . . . , 0). We denote the upper and lower bounds of the condi-
tional number of RFID tags that R1 drops in this case as N0

u and N0
l , respectively. We

also denote the upper and lower bounds of the conditional capture time in the other
subcases as N1

u,. . . N2N−1−1
u and N1

l ,. . . N2N−1−1
l , respectively. Then, we have

N0
u = (P0)N−1 · 1

P · �
T1≤t1

λN−1 · (2) · e
−λ(

N−1∑
j=1

D j)
dD1...dDN−1

+(P0)N−1 · 1
P · �

T1>t1,T2≤t2

λN−1 · (3) · e
−λ(

N−1∑
j=1

D j)
dD1...dDN−1

+....

+(P0)N−1 · 1
P · �

T1 >t1, T2 >t2, ...

Ti−1 >ti−1, Ti ≤ ti

λN−1 · (i + 1) · e
−λ(

N−1∑
j=1

D j)
dD1...dDN−1

+...

+(P0)N−1 · 1
P · �

T1 >t1, T2 >t2, ...

T N−2 ≤ tN−2

T N−1 ≤ tN−1

λN−1 · (N) · e
−λ(

N−1∑
j=1

D j)
dD1...dDN−1

(11)

N0
l = (P0)N−1 · 1

P · �
T1≤t1

λN−1 · (1) · e
−λ(

N−1∑
j=1

D j)
dD1...dDN−1

+(P0)N−1 · 1
P · �

T1>t1,T2≤t2

λN−1 · (2) · e
−λ(

N−1∑
j=1

D j)
dD1...dDN−1

+....

+(P0)N−1 · 1
P · �

T1 >t1, T2 >t2, ...

Ti−1 >ti−1, Ti ≤ ti

λN−1 · (i) · e
−λ(

N−1∑
j=1

D j)
dD1...dDN−1

+...

+(P0)N−1 · 1
P · �

T1 >t1, T2 >t2, ...

T N−2 ≤ tN−2

T N−1 ≤ tN−1

λN−1 · (N − 1) · e
−λ(

N−1∑
j=1

D j)
dD1...dDN−1.

(12)

Here , Ti =
i∑

j=0
G(V2, D j), ti = 1

V1

i∑
j=1

D j, i = 1, ..., N − 1.
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Fig. 2. Capture probability versus D0.

Fig. 3. Capture probability versus r.

Then, similar to (11) and (12), we can calculate N1
u,. . . N2N−1−1

u and N1
l ,. . . N2N−1−1

l .

Then we have Nu =
2N−1−1∑

j=0
N j

u and Nl =
2N−1−1∑

j=0
N j

l . We have now solved Problem 4.

5. ANALYTICAL RESULTS OF PRIMATE-INSPIRED SCENT-TRAIL COMMUNICATION

In this section, we obtain some numerical results for the performance of the scent-trail
mechanism under different parameters.

In this section, we assume that (1) there is no turn in the road, and that (2)
G(V2, Di) = Di

/
V2 and H(V2, Di) = Di

/
aV2, aV2 ≥ V1, where i = 1, 2, .., n. We now

denote the ratio of V2 to V1 as r. Then, from the first assumption, we know that
1 − P = p0, Tu = T0

u, Tl = T0
l , Du = D0

u, Dl = D0
l , Nu = N0

u, and Nl = N0
l .

5.1. The Probability that R2 Can Capture R1

In Figure 2, we fix λ = 1, N = 4, r = 2, 4, and 8, and let D0 increase from 0 to 50 with an
increment of 5. Figure 2 shows the capture probability P with three different r values
over the distance D0 between R1 and R2. As illustrated in the figure, given a fixed r,
P decreases as D0 increases. With each fixed D0, P increases as r increases.

In Figure 3, we fix λ = 1, N = 4, D0 = 1, 10, and 50, and let r increase from 1 to 10
in increments of 1. Figure 3 shows the capture probability P with three different D0
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Fig. 4. Capture probability versus λ.

Fig. 5. Capture probability versus λ.

values over the ratio of V2 to V1—r. As illustrated in the figure, given a fixed D0, P
increases as r increases. With each fixed r, P decreases as D0 increases.

In Figure 4, we fix D0 = 10, N = 4, 8, and 11, and let λ increase from 0.1 to 1 in
increments of 0.1. Figure 4 shows the capture probability P with three different N
values over λ. As illustrated in the figure, given a fixed N, P decreases as λ increases.
With each fixed λ, P increases as N increases.

In Figure 5, we fix D0 = 10, N = 4, 8, and 11, and let λ increase from 5 to 50 in
an increments of 5. Figure 5 shows the capture probability P with three different N
values over λ. As illustrated in the figure, given a fixed N, P decreases as λ increases.
With each fixed λ, P increases as N increases.

5.2. The Conditional Average Time that R2 Takes to Capture R1 with the Condition that R2 Can
Capture R1

In Figure 6, we fix λ = 1, N = 4, r = 2, 4, and 8, V1 = 1, and let D0 increase from 0 to 50 in
increments of 5. Figure 6 shows the upper and lower bounds of the conditional average
time that R2 takes to capture R1 in the case that it can capture R1. It shows the upper
and lower bounds of the conditional average time over D0 with three different values of
r. As illustrated in the figure, with each fixed r, the difference between the upper and
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Fig. 6. Average time for tracking when capturing versus D0.

Fig. 7. Average time for tracking when capturing versus r.

lower bounds increases as D0 increases. With each fixed D0, the difference between
the upper and lower bounds decreases as r increases.

In Figure 7, we fix λ = 1, N = 4, D0 = 1, 10, and 50, and V1 = 1, and let r increase
from 2 to 10 in increments of 1. Figure 7 shows the upper and lower bounds of the
conditional average time that R2 takes to capture R1 in the case that it can capture R1.
It shows the upper and lower bounds of the conditional average time over r with three
different values of D0. As illustrated in the figure, with each fixed r, the difference
between the upper and lower bounds increases as D0 increases. With each fixed D0,
the difference between the upper and lower bounds decreases as r increases.

In Figure 8, we fix D0 = 10, N = 4, 8, and 11, V1 = 1, and r = 4, and let λ increase
from 0.1 to 1 in increments of 0.1. Figure 8 shows the upper and lower bounds of the
conditional average time that R2 takes to capture R1 in the case that it can capture R1.
It shows the upper and lower bounds of the conditional average time over λ with three
different values of N. As illustrated in the figure, with each fixed N, the difference
between the upper and lower bounds decreases as λ increases.

In Figure 9, we fix D0 = 10, N = 4, 8, and 11, V1 = 1, and r = 4, and we let λ increase
from 5 to 20 in increments of 2.5. Figure 9 shows the upper and lower bounds of the
conditional average time that R2 takes to capture R1 in the case that it can capture R1.
It shows the upper and lower bounds of the conditional average time over λ with three
different values of N. As illustrated in the figure, with each fixed N, the difference
between the upper and lower bounds decreases as λ increases.
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Fig. 8. Average time for tracking when capturing versus λ.

Fig. 9. Average time for tracking when capturing versus λ.

5.3. The Conditional Average Length of the Path that R2 Takes to Capture R1 With the
Condition that R2 Can Capture R1

In Figure 10, we fix r = 2, 4, and 8, and let D0 increase from 0 to 50 in increments of 5.
Figure 10 shows the upper and lower bounds of the conditional average length of the
path that R2 takes to capture R1 in the case that it can capture R1. It shows the upper
and lower bounds of the conditional average length of the path that R2 takes over D0
with three different values of r. As illustrated in the figure, with each fixed r, the
difference between the upper and lower bounds increases as D0 increases. With each
fixed D0, the difference between the upper and lower bounds increases as r increases.

In Figure 11, we fix D0 = 1, 10, and 50, and let r increase from 2 to 10 in increments
of 1. Figure 11 shows the upper and lower bounds of the conditional average length
of the path that R2 takes to capture R1 in the case that it can capture R1. It shows
the upper and lower bounds of the conditional average length of the path that R2 takes
over r with three different values of D0. As illustrated in the figure, with each fixed D0,
the difference between the upper and lower bounds decreases as r increases. With each
fixed r, the difference between the upper and lower bounds increases as D0 increases.

In Figure 12, we fix D0 = 10, N = 4, 8, and 11, V1 = 1, and r = 4, and let λ increase
from 0.1 to 1 in increments of 0.1. Figure 12 shows the upper and lower bounds of
the conditional average length of the path that R2 takes to capture R1 in the case that
it can capture R1. It shows the upper and lower bounds of the conditional average
length of the path that R2 takes over λ with three different values of N. As illustrated
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Fig. 10. Average length of path for tracking when capturing versus D0.

Fig. 11. Average length of path for tracking when capturing versus r.

Fig. 12. Average length of path for tracking when capturing versus λ.

in the figure, with each fixed N, the difference between the upper and lower bounds
decreases as λ increases.

In Figure 13, we fix D0 = 10, N = 4, 8, and 11, V1 = 1, and r = 4, and let λ increase
from 5 to 20 in increments of 2.5. Figure 13 shows the upper and lower bounds of the
conditional average time that R2 takes to capture R1 in the case that it can capture
R1. It shows the upper and lower bounds of the conditional average length of the path
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Fig. 13. Average length of path for tracking when capturing versus λ.

Fig. 14. Average number of RFIDs for tracking when capturing versus D0.

that R2 takes over λ with three different values of N. As illustrated in the figure, with
each fixed N, the difference between the upper and lower bounds is so slight that it is
approximated to zero.

5.4. The Conditional Average Number of RFID Tags that R1 Drops With the Condition that R2

Can Capture R1

In Figure 14, we fix r = 2, 4, and 8, and let D0 increase from 0 to 50 in increments of
5. Figure 14 shows the upper and lower bounds of the conditional average number of
RFID tags that R1 drops in the case that R2 can capture R1. It shows the upper and
lower bounds of the conditional average number of RFID tags that R1 drops over D0
with three different values of r. As illustrated in the figure, with each fixed r, both the
upper and lower bounds increase when D0 increases. With a fixed D0, both the upper
and lower bounds decrease as r increases.

In Figure 15, we fix D0 = 1, 10, and 50, and let r increase from 2 to 10 in increments
of 1. Figure 15 shows the upper and lower bounds of the conditional average number
of RFID tags that R1 drops in the case that R2 can capture R1. It shows the upper
and lower bounds of the conditional average number of RFID tags that R1 drops over r
with three different values of D0. As illustrated in the figure, with each fixed D0, both
the upper and lower bounds decrease as r increases. With a fixed r, both the upper and
lower bounds decrease as D0 increases.
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Fig. 15. Average number of RFID tags for tracking when capturing versus r.

Fig. 16. Average number of RFIDs for tracking when capturing versus λ.

In Figure 16, we fix D0 = 10, N = 4, 8, and 11, V1 = 1, and r = 4 and let λ increase
from 0.1 to 1 in increments of 0.1. Figure 16 shows the upper and lower bounds of
the conditional average number of RFID tags that R1 drops in the case that R2 can
capture R1. It shows the upper and lower bounds of the conditional average number
of RFID tags that R1 drops over λ with three different values of N. As illustrated in
the figure, with each fixed N, the difference between the upper and lower bounds is a
constant 1 and both the upper and lower bounds increase as λ increases.

In Figure 17, we fix D0 = 10, N = 4, 8, and 11, V1 = 1, and r = 4, and let λ increase
from 5 to 20 in increments of 2.5. Figure 17 shows the upper and lower bounds of the
conditional average number of RFID tags that R1 drops in the case that R2 can capture
R1. It shows the upper and lower bounds of the conditional average number of RFID
tags that R1 drops over λ with three different values of N. As illustrated in the figure,
with each fixed N, the difference between the upper and lower bounds is a constant 1
and both the upper and lower bounds increase as λ increases.

6. FURTHER STUDIES ON THE PRIMATE-INSPIRED SCENT-MARKING STRATEGY

In this section, we first provide further studies on our primate-inspired strategy for
robot collaboration in mobile and static sensors. Similar to primates, whose glands
or urine can be utilized for scent-marking, robots are equipped with RFID tags or
sensors that can be deployed with information for others to pick up. We then provide
some analysis of this strategy.
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Fig. 17. Average number of RFID tags for tracking when capturing versus λ.

Fig. 18. RFID tags or sensors.

6.1. The Strategy

In our strategy, robots are not only responsible for collecting information and saving
energy for the whole network but are also critical for detecting and handling events. In
the network, several robots are normally deployed to patrol their areas of monitoring
responsibility. Once they detect an event, they try to address it. Sometimes, robots
need help. Upon detecting such an event, they deploy RFID tags or sensors that carry
information necessary to attract other robots passing by to collaborate to handle the
problem. For example, when detecting pollution or radiation, robots remain at the
polluted area waiting for other robots. For some other events, such as detecting enemy
traffic, robots need to track the traffic and deploy RFID tags and sensors on their way
to provide directions for other robots. They need to leave enough information to guide
other robots to catch up and collaborate.

Patrolling robots are responsible for collecting data from sensors, detecting events
in time, and deploying an adequate number of RFID tags or sensors to inform other
robots when collaboration is necessary. When a robot discovers an event, it will go to
the site and deploy RFID tags or sensors on its way. If the robot is near the site, it will
simply deploy RFID tags or sensors in order to attract nearby robots. Directed by the
information conveyed by those deployed RFID tags or sensors, the followers are thus
informed about events and try to catch up to the former robot for cooperation.

Figure 18 shows an example of the deployment of RFID tags. However, only a lim-
ited number of RFID tags or sensors can be carried by each robot. Carrying too many
RFID tags or sensors is not only a waste of resources, but it is also unrealistic. RFID
tags and sensors have their own lifetimes and communication ranges. An RFID tag
will run out of power when its energy lifetime expires.
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Fig. 19. Extra time for finding the right direction at a turn.

6.2. Analysis of Collaborations Between Robots

We assume that robots move with a fixed speed along a line/curve unless they make
turns. Therefore, between each pair of RFID tags, the trajectory of the robot is the
segment between the two tags. When robots make turns, they drop a tag at the corner
to clearly indicate their routes. It is quite possible that several robots may detect tags
from the same robot. As robots are all independent from each other, we only need to
study the performance of a single follower. In the following discussions, we use Robot1
to denote the lead robot and Robot2 to denote the follower.

6.2.1. Searching Function. When Robot2 discovers an RFID tag, it will try to find other
RFID tags one by one until it arrives at the site of the event. As RFID tags are ran-
domly distributed, the distance between each pair of tags is a random variable. Cor-
respondingly, the time for Robot2 to find each RFID tag is also a random variable. We
use s(d, v) to describe the searching function for Robot2 to find the next RFID, where
d is the distance between two tags and v is the speed of the follower. In our study, we
will employ several models of the searching process.

6.2.2. Turning Function. From a realistic point of view, robots do not always travel in an
unvarying direction. They make turns whenever roads turn. In our model, we assume
that Robot1 drops at least one RFID tag at the corner of each turn so that the route of
Robot1 is clearly indicated.

Robot2’s searching work will not always follow its current path. It may also take
some extra time to determine the direction whenever there is a turn on Robot1’s route.
We use another function f (d, v) to calculate the extra time taken by Robot2 to find the
correct direction when Robot1 has made a turn, where d is the distance between two
tags and v is the speed of Robot2. Figure 19 illustrates two turning examples in which
the short distance costs less time to find the right direction. In the following study, we
also employ a function to model the time cost of turning.

6.2.3. Tradeoff. Whether RFID tags or sensors are deployed sparsely or densely can
critically impact whether and when, Robot2 can catch up to Robot1. On the one hand,
if RFID tags are densely distributed, Robot2 can find the next RFID tag easily, which
saves searching time. The total distance covered by the tags is short, and Robot2 may
not catch up to Robot1 within the distance since the number of RFID tags is limited
and the tags can be used up within a time period. On the other hand, having the RFID
tags sparsely distributed causes Robot2 to take longer to find the next RFID tag but
also saves tags. The total distance covered by RFID tags is extended so that Robot2 has
a greater probability of catching up to Robot1. Therefore, there is a tradeoff between
the density of deployed tags and the delay of catching up to Robot2.

Meanwhile, RFID tags have a set lifetime. To save RFID tags, robots may deploy
them sparsely. Consider the mean value of the distance between two RFID tags. With
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Fig. 20. Robot 2 catches up to Robot1 at C before RFID tags are consumed.

a larger mean value, it will take longer for followers to find the next tag. If these
RFID tags are not found during their lifetime, they will die. These RFID tags are then
wasted. The lifetime consideration complicates the pursuing problem.

As RFID tags are randomly deployed, we evaluate the RFID tags’ density by the
mean value of their distribution. A large mean value corresponds to a sparse deploy-
ment, and vice versa.

6.2.4. Pursuing Problem. We use V1 and V2 to describe the speeds of Robot1 and Ro-
bot2, respectively. In order to catch up to Robot1, Robot2 must have a high enough V2.

Figure 20 shows Robot2 catching up to Robot1 at location C, where Robot2 detected
the first RFID tag at location A while Robot1 was already at location B.

Robot1 has a limited number of RFID tags, denoted as N. The number of RFID tags
between B and C is x. We use n to denote the number of RFID tags between locations
A and B. Then we have x + n ≤ N.

We use “delay” to describe the time required for Robot2 to catch up to Robot1 be-
tween A and C. If Robot2 cannot catch up to Robot1, we consider the delay to be
infinite.

delay ==

⎧⎪⎨
⎪⎩

c0/v2 +
x−1∑
i=1

s(di, v2) +
x−1∑
i=1

ki · f (di, v2), (catches up)

∞ , (cannot catch up)
;

ki =

{
0 , if Robot1 turns at tag i
1 , if Robot1 doesn’t turn at tag i

As in our assumption, Robot1 makes a turn with a probability of p when it drops an
RFID tag. di is the distance between tag i and tag (i + 1). The condition that Robot2
can catch up to Robot1 is

delay ≤
N−n−1∑

i=1

di/v1.

6.3. Metrics

In the collaboration scheme, whether Robot2 can catch up to Robot1 is the main focus.
We study the catch probability and delay between Robot1 and Robot2, which are im-
pacted by many factors, such as the speeds of the two robots, the initial distance, and
so on.

For the pursuing problem, the speeds of the two robots are the most critical factors.
We also study the speeds required for Robot1 and Robot2 to meet each other. It is easy
to understand that the faster the following robot and the slower the former robot, the
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Fig. 21. The pursuing problem of two Robots.

Fig. 22. Minimum V2 vs. mean (with different searching functions).

easier it becomes for the two robots to meet each other. Therefore, we study the ranges
of the two robots’ speeds (the maximum and minimum values of Robot1).

Meanwhile, we also study the impact of other factors, such as the mean value of
the deployment of RFID tags, the searching function, the turning function, and so on.
In order to show their roles in the problem, we assume some models of searching and
turning functions for our purposes; however, the models may not exactly correspond
with real situations.

7. SIMULATION WITHOUT CONSIDERING LIFETIME OF RFID TAGS/ SENSORS

In this section, we study the pursuing problem without considering the lifetimes of
RFID tags/sensors. The simulations are conducted using a discrete event simulation
that uses C++ language.

We assume that RFID tags are deployed in an exponential distribution with a mean
value. We also assume that, when Robot1 drops an RFID tag, it makes a turn with
probability p. We assume that Robot1 can deploy no more than x = 100 RFID tags. As
shown in Figure 21, Robot2 detects the first RFID tag at location A while Robot1 is
already at location B. After that, Robot1 can drop at most 100 RFID tags. Robot2 must
catch up to Robot1 before location C, where Robot1 uses up 100 RFID tags. We use t0
to describe the time required for Robot2 to reach location B.

In the following simulations, we study the performance of the minimum require-
ment of V2, the maximum requirement of V1, the delay time for Robot2 to catch up to
Robot1, and the catch probability.

7.1. Min (V2) vs. Mean:

Figures 22 and 23 show the performance of the minimum requirement of V2.
Figure 22 shows the performance of the minimum V2 with different searching

functions and 20% turning probability. The searching functions are s(d, v) = d5/2/v,
s(d, v) = d2/v, and s(d, v) = d3/2/v. The turning function is f (d, v) = πd2/v. Figure 23
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Fig. 23. Minimum V2 vs. mean (with different turning probabilities).

Fig. 24. Delay vs. V2.

shows the performance of the minimum V2 with turning probabilities of 10%, 20%,
and 50%. The searching function is the same: s(d, v) = d3/2/v.

From these two figures, we can learn that the minimum requirement of V2 is not
linear with the mean. In Figure 22, from the upper line or with the searching function
s(d, v) = d5/2/v, the minimum requirement of V2 increases with the mean value. More
detailed information about the lower lines is shown in Figure 23.

In Figure 23, when the mean value is very small, Robot1 will drop all its RFID tags
in a short time. Then Robot2 needs to move at a high speed (V2) in order to catch up
to Robot1 before all its RFID tags are dropped. When the mean value is very large,
Robot2 needs to search for the next RFID tag over a much larger distance. Therefore,
Robot2 should also move at a high speed in order to catch up.

The minimum requirement of V2 is related not only to the mean value and the
probability of a turn, but also to the choice of searching function and t0.

7.2. Delay vs. V2

In this subsection, we study the delay for different speeds of Robot2 (V2). Figure 24
shows the delay when V1 = 10 and t0 = 35; we tried the simulation thousands of times
to achieve more general results.

From the figure, we can learn that the delay decreases with the speed of Robot2.
However, for lower speeds, the figure shows some unusual results. The reason is that,
with a lower speed, Robot2 is less likely to catch up to Robot1.

During the following simulations, we provide a threshold to determine whether Ro-
bot2 can catch up to Robot1. We simulate each speed 10000 times. If Robot2 does not
catch up to Robot1 more than 100 times, we say that Robot2 cannot catch up to Robot1.
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Fig. 25. Delay reciprocal vs. v2.

Fig. 26. Catch probability vs. V2.

The threshold denotes the number of times Robot2 fails to catch up to Robot1. It can
be any reasonable data in the simulation. Figure 24 shows the result.

From Figure 24, we can learn that the delay starts from an infinite value at the
beginning of the V2 axis, which means that Robot2 cannot catch up to Robot1 at this
speed. Furthermore, the delay decreases with V2. With a larger mean value, the delay
is also larger.

In order to express the simulation results more clearly, especially for the infinite
value, we draw another figure, which shows the reciprocal value of the delays. The
reciprocal value of the infinite result is zero. The result is shown in Figure 25.

From Figure 25, we can learn that the reciprocal value of the delay increases with
V2. In other words, the delay decreases with the speed of Robot2. The beginning points
are on the V2 axis, which means the delay is infinite and Robot2 cannot catch up to
Robot1 at this speed. For a different mean, the reciprocal value of the delays starts
from a different speed. This is because we cannot do an infinite number of simulations.
For another simulation, the value may start at another speed. However, the figure still
shows the performance of the delay, which decreases with the speed of Robot2.

7.3. Catch Probability vs. V2

In this subsection, we study the probability that Robot2 catches up to Robot1. The
simulation is conducted with V1 = 10 and t0 = 35. The result are shown in Figure 26.

From the figure, we can learn that the probability increases with the speed of Ro-
bot2. When the speed is very low, the catch probability is nearly zero. That is, at such
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Fig. 27. Maximum V1 vs. mean.

Fig. 28. Maximum V1. vs. mean.

a low speed, Robot2 cannot catch up to Robot1. When Robot2 moves at a higher speed,
the probability of catching up to Robot1 increases. However, even when the speed is
very high, such as 700 or 800, it is still possible that Robot2 cannot catch up to Robot1.
This is due to the deployment of RFID tags, which follows an exponential distribution.
The distance between each pair of RFID tags is random. Therefore, the time Robot2
takes for each distance is also random. Then, within the 10000 simulations, it is pos-
sible that the distance between these RFID tags takes Robot2 a great deal of time to
cover and that it cannot even catch up to Robot1.

However, from the figure, we cannot learn the exact performance of catch probability
for different mean values. When mean = 10, the catch probability is greater than when
mean = 5 or 15. Such a performance is consistent with Figure 23, in which we analyzed
the impact of the mean.

7.4. Max V1 vs. Mean

In this subsection, we study the performance of the maximum value of V1. Intuitively,
the higher the speed of Robot1 (V1), the more difficult it is for Robot2 to catch up to
Robot1. Therefore, it is of great importance to study the maximum requirement of V1.
In this subsection, we assume that V2 = 500 and t0 = 35.

Figures 27 and 28 show the performance of the maximum requirement of V1.
Figure 27 shows the performance of the maximum of V1 with different searching
functions and 20% turning probability. The searching functions are s(d, v) = d5/2/v,
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Fig. 29. Delay vs. V1.

s(d, v) = d2/v, and s(d, v) = d3/2/v. The turning function is f (d, v) = πd2/v. Figure 28
shows the performance of the maximum V1 with turning probabilities of 10%, 20%,
and 50%. The searching function is the same, s(d, v) = d3/2/v, and the turning function
is still f (d, v) = πd2/v.

From Figure 27, we can learn that larger power searching functions correspond to
a smaller V1. This is because, the more complex the searching function, the more
difficult it is for Robot2 to find the next RFID tag and therefore to catch up to Robot1.
The lowest line with the searching function s(d, v) = d5/2/v shows that the maximum
requirement of V1 decreases with the mean value. But, from the upper two lines, we
can learn that the maximum requirement of V1 is not linear with the mean value.
More detailed information on upper lines is shown in Figure 28.

Figure 28 shows the detailed performance of the maximum V1 with searching func-
tion s(d, v) = d3/2/v. Three different turning probabilities are considered. When the
mean is very small, RFID tags are more easily consumed. Thus the speed of Robot1
should not be so high that Robot2 is more likely to catch up to Robot1 before all RFID
tags are dropped. When the mean value is very large, Robot2 needs more time to
search for the next RFID tag. Robot1 should therefore move slowly to offer Robot2
more time to catch up.

The maximum requirement of V1 is not only related to the mean value and the
probability of turning, but also to the choice of searching function and t0. In this work,
we choose some power functions of the distance between each pair of RFID tags to
simulate the searching process of Robot2.

7.5. Delay vs. V1

We now study the performance of the delay vs. the speed of Robot1 (V1). We still have
V2 = 500 and t0 = 35.

In our simulation, we simulate the deployment thousands of times. We still use the
same threshold as in Subsection B. Figure 29 shows the results of the delay. From
the figure, we can learn that delay increases with the speed of Robot1. The results
are consistent with our intuition. The faster Robot1 moves, the more difficult it is for
Robot2 to catch up.

In Figure 29, V1 starts at 0 and the delay starts at t0. This means that Robot1 does
not move, but stays there and waits for Robot2. Then the delay increases with V2.
Larger mean values, correspond to larger delays. When V1 is as large as 12 or 14,
all delays become infinite (Robot2 cannot catch up to Robot1 before all RFID tags are
dropped).
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Fig. 30. Reciprocal of delay vs. V1.

Fig. 31. Catch probability vs. V1.

In order to express the simulation results more clearly, we draw another figure rep-
resenting the reciprocal value of delays in Figure 30. The reciprocal value of the infi-
nite result then is zero.

From Figure 30, we can learn that the reciprocal value of the delay decreases with
V1. That is, the delay increases with the speed of Robot1. With a larger V1, the result
is zero. This means that the delay is infinite and that Robot2 cannot catch up to Robot1
at such a speed. For different means, the reciprocal values of delays end at different
speeds. This is because we cannot do an infinite number of simulations. For another
simulation, the value may end at another speed. However, the figure still shows the
performance of the delay, which increases with the speed of Robot1.

7.6. Catch Probability vs. V1

In this subsection, we study the probability that Robot2 catches up to Robot1. The
simulation is conducted with V2 = 500 and t0 = 35. The results are shown in Figure 31.

From the figure, we can learn that the probability decreases with the speed of Ro-
bot1. When the speed is very low, the catch probability is nearly 1. In other words,
with a low speed, Robot2 can more easily catch up to Robot1. When Robot1 moves at a
higher speed, the probability of being caught decreases. In fact, even when the speed
of Robot1 is very low, it is still possible that Robot2 cannot catch up to Robot1. This
is due to the deployment of RFID tags in an exponential distribution. The distance
between each pair of RFID tags is random. Therefore, the time Robot2 takes to cover
each distance is also random. Then, within the 10000 simulations, it is possible that
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Fig. 32. Catch probability vs. V1 with considering the lifetime of RFID.

the distance between these RFID tags costs Robot2 a great deal of time to cover and
that it cannot even catch up to Robot1.

However, we cannot learn the exact performance of catch probabilities with different
mean values from the figure. At some speeds, such as from 10 to 14, with mean = 10,
the catch probability is higher than the performance withs mean = 5 or 15. Such
a performance is consistent with Figure 23, in which we analyzed the impact of the
mean.

8. SIMULATION CONSIDERING THE LIFETIMES OF RFID TAGS/ SENSORS

When we studied the deployment of the RFID tags of robots, we learned that intensity
greatly impacts performance. On one hand, if RFID tags are densely deployed, the
former robot will soon use up its RFID tags. The follower then has to catch up to
the former over a short distance, which means that the required speed is high. On
the other hand, if RFID tags are sparsely deployed, the follower will spend more time
searching for the next tag. In order to catch up to the former robot, the follower then
needs to move at a high speed.

However, when we analyzed this problem in the previous section, we assumed that
RFID tags/sensors were on at all times. We know that RFID tags/sensors run out of
power at the end of their lifetime. In this section, we study the impact of the lifetime
of RFID tags/sensors.

8.1. Catch Probability vs. V1

In this subsection, we study the probability of Robot2 catching up to Robot1 while
considering the lifetime of RFID tags /sensors. The simulation is conducted with V2 =
500, t0 = 35,and mean = 10. Three lifetime values are chosen for study 30, 40, and 50.
The results are shown in Figure 32.

From the figure, we can learn that the probability decreases with the speed of Ro-
bot1, which is consistent with the results of our simulations in the previous section.
With a longer lifetime, the catch probability is greater than it is with a shorter lifetime.
This is also consistent with our intuition. With a longer lifetime, RFID tags/ sensors
would remain for a longer time and therefore would help Robot2 catch up to Robot1
more easily and quickly.

8.2. Catch Probability vs. V2

In this subsection, we continue to study the probability that Robot2 catches up to Ro-
bot1, while considering the lifetime of RFID tags/sensors. The simulation is conducted
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Fig. 33. Catch probability vs. V2 with considering the lifetime of RFID.

Fig. 34. Catch probability vs. the lifetime of RFID.

with V1 = 10, t0 = 35, and mean=10. Three lifetime values are chosen for study: 30, 40,
and 50. The results are shown in Figure 33.

From the figure, we can learn that the probability increases with the speed of Ro-
bot2, which also achieves similar results as our simulations in the last section. With
a longer lifetime of RFID tags/sensors, the catch probability is greater than it is with
a shorter lifetime. This is consistent with our intuition. With a longer lifetime, RFID
tags/sensors would remain for a longer time and therefore would help Robot2 catch up
to Robot1 more easily and quickly.

8.3. Catch Probability vs. Lifetime

In this subsection, we continue to study the probability that Robot2 catches up to Ro-
bot1, while considering the lifetime of RFID tags/sensors. The simulation is conducted
with V2 = 500, t0 = 35, and mean = 10. Three values of V1 are chosen for study: 5, 10,
and 15. The results are shown in Figure 34.

From the figure, we can learn that the probability increases with the lifetime of
RFID tags/sensors. With a longer lifetime of RFID tags/sensors, the whole searching
progress of Robot2 will receive more guidance. Then the catch probability is higher
than it is with a shorter lifetime. This is also consistent with our intuition. With a
longer lifetime, RFID tags/sensors would be able to remain for a longer time, which
would help Robot2 catch up to Robot1 more easily and quickly.

Meanwhile, for a larger value of V1, the corresponding value of the catch probability
is lower. The faster Robot1 moves, the more difficult it is for Robot2 to catch up.
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Fig. 35. Delay vs. V1 with considering the lifetime of RFID.

Fig. 36. Delay vs. V2 with considering the lifetime of RFID.

8.4. Delay vs. V1

Now we study the performance of delay vs. the speed of Robot1 (V1), while considering
the lifetime of RFID tags/sensors. We still have V2 = 500, t0 = 35, and lifetime = 30, 40,
and 50.

We employ a similar method in Subsection 7.5 as in the last section. The results
of the simulation are shown in Figure 35, and they are similar to our previous simu-
lations. The results are consistent with our intuition. The faster Robot1 moves, the
more difficult it is for Robot2 to catch up. Therefore, the delay is longer.

For RFID tags with a longer lifetime, the delay is shorter. This is because, the longer
the RFID tag is active, the more guidance Robot2 will receive.

8.5. Delay vs. V2

In this subsection, we continue to study the performance of delay vs. the speed
of Robot2 (V2), while considering the lifetime of RFID tags/sensors. We still have
V1 = 10, t0 = 35, and lifetime = 30, 40, 50.

We employ a similar method as in the simulation of Subsection 7.2. The results
of the simulation are shown in Figure 36, and they are similar to our former simula-
tions. The results are consistent with our intuition. The faster Robot2 moves, the more
difficult it is for Robot2 to catch up.

For RFID tags/sensors with a longer lifetime, the delay is shorter. This is because
the longer an RFID tag/sensor is active, the more guidance Robot2 will receive. It will
therefore be easier for Robot2 to catch up to Robot1.
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Fig. 37. Delay vs. the lifetime of RFID.

8.6. Delay vs. Lifetime

In this subsection, we continue to study the delay time for Robot2 to catch up to Robot1
while considering the lifetime of RFID tags/sensors. The simulation is conducted with
V2 = 500, t0 = 35, and mean = 10. Three values of V1 are chosen for study: 5, 10, and
15. The results are shown in Figure 37.

From the figure, we can learn that the delay decreases with the lifetime of RFID
tags. For RFID tags with a longer lifetime, the whole searching progress of Robot2
will receive more guidance. Then the delay of Robot2 will be shorter than it is with
a shorter lifetime. This is also consistent with our intuition. With a longer lifetime,
RFID tags/sensors would be able to remain for a longer time, which would help Robot2
catch up to Robot1 more easily and quickly.

Meanwhile, for a larger value of V1, the corresponding value of the catch probability
is lower. The faster Robot1 moves, the more difficult it is for Robot2 to catch up.

From Figure 37, we cannot see the results of the delay with V1 = 15. This is because,
with such a large value of V1, no matter what lifetime value is chosen, Robot2 cannot
catch up to Robot1 and the delay is always infinite.

9. FUTURE RESEARCH DIRECTIONS

9.1. Multiple Robot Communications

Until now, we have mainly focused on the pursuit between two robots. However, the
pursuing problem should involve several or even many robots, especially for some dif-
ficult tasks, such as firefighting, tracking an enemy tank, and so on, which can only be
accomplished through the collaboration of more robots. From a realistic point of view,
once RFID tags/sensors are deployed along the track of robots, all other robots may
discover them and then pursue the former robot through these tags or sensors.

We will then not only care about whether they can catch up to the former robot, but
also about the speed of the robots pursuing the former robot and the number of robots
gathering.

First, we provide some description and assumptions of the problem. The former
robots, which detect some events, will deploy RFID tags/sensors around the event.
Then they will wait at the position of the event for the arrival of other robots. In such
a situation, with V1 = 0, all other robots that detect these tags/sensors can catch up to
Robot1 with a probability of 1, which will be demonstrated in the following simulations.
Robots that detect these RFID tags/sensors will gather at the event’s position or the
former robot’s position, following the instructions of these RFID tags/sensors. The
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former robot may also broadcast a message through the wireless network in order to
notify more robots within the whole network.

Generally, for each robot, we assume that they are patrolling within the wireless
network and monitoring the environment mainly in their areas of responsibility. Once
they receive an announcement from the wireless network about some urgent events,
they patrol for the destinations following the instructions of the wireless network and
RFID tags/sensors deployed by the former robot. We also design a patrolling strategy
for robots, which will be introduced in the following section.

For this problem, the most important metric for evaluation is the gathering speed
of following robots, which is how many robots gather together within one unit of time.

9.2. Robots May Leave RFID Tags to Override Existing RFID Tags

Robots deploy RFID tags or sensors carrying event-related information to inform their
partners. After being deployed, RFID tags /sensors will stay where they were deployed
and keep the implanted information until they die. Therefore, the corresponding weak-
ening of information becomes an obstacle for following robots to catch up. In order to
enhance the instruction and direction, followers may deploy their own RFID tags or
sensors to cover for the old tags if they are dying.

Meanwhile, the network and task are not invariable and the schedule of events also
changes with real situations. Therefore, the information carried by an RFID tag may
become out of date. We assume that information carried by each RFID tag includes
a time stamp telling the age of the event. When followers pass by with newer infor-
mation, they can deploy their own RFID tags to override the formerly deployed RFID
tags. For the sensor case, the information of sensors can be updated by the follower
after authentication.

9.3. Hierarchy of Robots

For the real-time problem, different events have different priorities because some
events may be more urgent or important. Generally, tougher or more important tasks
are always assigned to more reliable robots. Robots are also different in their func-
tions. Thus, some robots may be faster or have more functions and be stronger, while
others are limited in their abilities. We assume that robots employed in the network
know their hierarchies according to their capabilities. Therefore, when there are some
tougher or more urgent tasks, higher hierarchy robots are preferred.

We define the priority of events according to the hierarchy of the robots. When a
robot with a higher hierarchy, carrying its own event, passes by an RFID tag, the robot
can override the former information by deploying its own RFID tags with implanted
information regardless of the former event. Therefore, a robot with a dominant status
can dismiss the information deployed by subordinate robots.

9.4. Territoriality Defense

Sensors and RFID tags carrying the distributers’ information can not only direct part-
ners but also inform intruders. Commonly, sensor networks are deployed to monitor
an area by detecting information from intruders. Such a process is very similar to
territoriality defense.

Traditionally, sensors or RFID tags play the part of collectors by gathering informa-
tion from the environment and reporting events to the network. With a territoriality
defense, sensors/RFID tags should be able to actively communicate with the intruder
about the territoriality ownership and warn the intruder away from the area. Sensors/
RFID tags can send some electronic digital signals, much like the welcome sign of a
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city in the real world, to warn intruders, to advise them to avoid further conflicts, and
to alert the network or the personnel of the possible intrusions.

Based on different signal characters of sensors and RFID tags, we propose these two
kinds of strategies in detail as follows.

9.4.1. RFID Tags. RFID tags are devices with simple and limited capabilities. After
deployment they cannot be modified. We assume that RFID tags periodically send out
electronic messages and that those who are within communication range receive the
messages. There are two performance metrics to consider. The first one is the energy
efficiency of the RFID tags. In order to inform intruders, RFID tags need to send
messages frequently, which will cost a great deal of energy. Meanwhile, if the messages
are sent out over a large period, there might be no messages sent out when an intruder
passes through the boundary. Then, the intruder is not rewording intrusion activity.
Here is a tradeoff between energy efficiency and intruders being informed.

There are also some other related topics. First, how far to deploy an RFID tag
around the boundary is the deployment problem directly impacting the signal cover-
age. We assume that all intruders passing through the boundary can recognize the
signal. Second, in order to save energy we can arrange for the neighboring RFID tags
to send signals intermittently. We can divide RFID tags into different groups that
work alternately but with the same period. Neighboring RFID tags work alternately.

9.4.2. Sensors. Compared to RFID tags, sensors work in a more flexible way and are
more powerful. Sensors can send warning messages whenever an intruder is detected.
In such a way, energy consumption is more efficient. We only need to consider how to
ensure a high probability that the intruders are noticed, which is greatly related to the
sensing coverage of the sensor network. Then the problem is similar to the boundary
coverage problem, which we have studied in other papers such as Xiao and Zhang
[2011a].

9.5. Sensors for Directing the Followers

When robots deploy sensors instead of RFID tags, the chain of sensors will form a rout-
ing path that directs following robots and extends the communication among sensors,
especially those sensors on the chain. We assume that sensors deployed by robots are
all within the communication range of their neighbors. The former robot’s location is
known by all sensors on the chain. Then, once a following robot encounters a sensor
on the chain, it will get the latest information about the location of the former robot.

This will benefit the pursuing problem in two ways. First, it saves time spent on
searching. Robot2 will know the latest location of Robot1 when it detects a sensor on
the chain. Therefore, Robot2 can directly go to the location without searching for the
sensors on the chain one by one. Second, with information on the location of Robot1,
Robot2 can seek a shorter way to catch up to Robot1.

9.6. Prediction Algorithms

Regardless of whether sensors or RFID tags are deployed by robots, the chasing robot
can employ an appropriate prediction algorithm to forecast the moving pattern of Ro-
bot1. With the help of the prediction algorithm, the pursuing problem of Robot2 will
be easier, due to less searching time and higher chasing efficiency.

9.7. Robot Patrol Algorithm

Robots are introduced in our system to handle events or incidents. Here an event may
be the detection of an intrusion tank or warning information indicated in a data packet
that is related to some abnormal situation. When a robot (Robot1) detects an event,
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it will go back to its way coming here. Then it will choose an appropriate distance
and turn back to the location of the event. After turning back to the event location, it
will deploy RFID tags/sensors on its way. When other robots detect one of these RFID
tags/sensors, they will begin to pursue the first robot in order to gather together to
handle the events.

When there is no event in the network, robots patrol following a random patrol
scheme such as in Xiao and Zhang [2011a] and Zhang and Xiao [2011]. Initially, they
are given the topology information from sinks and multihop sensors. They randomly
choose a route as their patrol path. When they arrive at a critical point, such as
an intersection, they randomly choose a route different than the one they came from
Xiao and Zhang [2011a]. The situation where two robots meet together should also be
considered. They may meet at a critical point or on a road. They first exchange their
information and then decide the path to patrol. They also share tasks if one of them
has tasks.

We don’t care how robots handle the events (being beyond our), but focus on their
patrolling strategy.

9.8. Related to Realistic Problems

Until now we have mainly focused on robots, and the research sounds greatly acad-
emic. In fact, this research is very similar to practical problems. A typical example
is a wild adventure. People need to leave some mark to record their route, which can
also help followers catch up. Meanwhile, animals often do similar things. Ants leave
pheromones that can only be recognized by them. Therefore, when they find some
food, many partners will gather to carry the food. Meanwhile, some zoologists also
track animals according to their excreta to study their living habits.

9.9. Transmission Range

In the previous subsections, we did not consider the ranges of RFID tags/sensors. In
fact, robots do not need to arrive at the exact position of an RFID tag/sensor but within
a nearby range. Each RFID tag has a signal range, and once robots are in the detection
range they can achieve their positions in the formation of the RFID tags/sensors. In
the future we will study the impact of this signal transmission range in the pursuing
schemes.

10. CONCLUSIONS

Scent-marking is a practical method for applications of mobile and static sensors with
RFID tags. Robots are resource-rich mobile devices with more energy, higher power,
and better processing capabilities and can make decisions and execute appropriate ac-
tions according to the information gathered from sensors. For some tasks, robots need
to collaborate. With equipped RFID tags, robots can also leave information for other
robots. In this article, we proposed several primate-inspired communication mech-
anisms including delayed-and-relayed and scent-trail communications among robots.
We analytically modeled and simulated scent-trail communication. We proposed and
studied the primate-inspired scent-marking method of robots in pursuing and tracking
problems. We studied related metrics, such as speed requirements, the related delays,
and the catch probabilities.

Future work will include studying the effectiveness of bio-inspired communications
in robot collaboration, the optimum number of messages to be relayed as in scent trails,
and changing deployment strategies or speeds according to the current situation.
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