WIRELESS COMMUNICATIONS AND MOBILE COMPUTING
Wirel. Commun. Mob. Comput. 2011; 11:254-266
Published online 01 July 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/wcm.988

SPECIAL ISSUE PAPER

A lightweight block cipher based on a multiple
recursive generator for wireless sensor networks and
RFID

Alina Olteanu’, Yang Xiao'*, Fei Hu?, Bo Sun® and Hongmei Deng*

1 Department of Computer Science, The University of Alabama, Tuscaloosa, AL 35487, U.S.A.
2 Department of Computer Science, The University of Alabama, AL 35487 U.S.A.

3 Department of Computer Science, Lamar University, Beaumont, TX 77710, U.S.A.

4 Intelligent Automation, Inc. (IAl), MD, U.S.A.

ABSTRACT

In this paper, we use a multiple recursive generator (MRG) to generate sequences of numbers with very long periods, i.e.,
pseudo-random sequences. The MRG effectively constructs a block cipher which satisfies important quality requirements
such as security, long period, randomness, and efficiency. We compare our approach with another lightweight block cipher
based on a linear congruential generator (LCG) and analyze the efficiency in terms of the number of basic operations that
are being performed. We also study the effects of using special classes of MRG which hold certain portability and efficiency
properties, and analyze their advantages in this context. The proposed cipher is a lightweight cipher, which is very useful
for resource limited resources such as sensor nodes in sensor networks, radio frequency identification (RFID) tags, etc.

Copyright © 2010 John Wiley & Sons, Ltd.

KEYWORDS
lightweight cipher; sensor network; RFID

*
Correspondence

Yang Xiao, Department of Computer Science, The University of Alabama, AL 35487 U.S.A.

E-mail: yangxiao@ieee.org

1. INTRODUCTION

Random sequences are commonly used in ciphers and key
management. For some devices, such as sensor nodes in
wireless sensor networks (WSNs) and radio frequency iden-
tification (RFID) tags, with limited resources in terms of
computational power, bandwidth, and size, using a ran-
dom generator would only imply the transfer and storage
of a short seed. However, since any algorithm has an
implicit/explicit finite state machine, the produced sequence
is not truly random; due to the finite number of states the
generated sequence becomes periodic. The period length
of such a sequence (i.e., the maximum length of the
sequence before it starts to repeat) is thus an important
factor in achieving randomness. A shorter than expected
period might lead to the sequence failing statistical pattern
detection tests. Many security schemes have been proposed
[17-52].

In this paper, our goal is a multiple recursive genera-
tor (MRG) as the basis of a lightweight block cipher with
the purpose of satisfying important quality requirements

254

[1] such as the security, long period, randomness, and effi-
ciency properties. We design a new lightweight cipher by
applying the MRG described in Reference [2] to an encryp-
tion scheme based on a popular, simpler pseudo-number
generator, called linear congruential generator (LCG) [3].
We analyze the overhead introduced by such a change and
assess the tradeoff between the improved security of the
scheme and the possible loss in performance, in terms of
the number of basic operations that need to be executed
when using such a pseudo-number generator. We also con-
sider special classes of MRGs which in addition to the large
period property are highly efficient, portable, and exhibit
good statistical properties [4-6]. We find that ciphers based
on such variations of MRGs perform significantly better
than the LCG-based cipher while at the same time being
secure enough for WSNs.

Such lightweight block ciphers can be applied to WSNs,
RFIDs, and their integration, as well as applications such
as wireless telemedicine [7-10].

The rest of the paper is organized as follows. In Sec-
tion 2, we present the background and significant related

Copyright © 2010 John Wiley & Sons, Ltd.

A.Olteanu etal.

work. In Section 3, we introduce our block cipher based
on the MRG generator. We then give a detailed analysis
of the number of operations necessary for both generat-
ing a pseudo-random number, and for the block cipher, in
Section 4. In Section 5, we compare our results with the
performance of the LCG-based cipher. In Section 6, we
provide performance analysis. In Section 7, we introduce
some special classes of MRGs and analyze their efficiency.
Section 8 presents approaches of speeding MRGS. Section
9 presents applications in WSNs and RFID sensor networks
while Section 10 concludes the paper.

Note that the LCG-based cipher in Reference [11] does
not use LCG as the cipher, but is a cipher utilizing LCG.
Since the LCG-based cipher in Reference [11] has been
compared with other ciphers, in this paper, we only compare
our cipher with the LCG-based cipher in Reference [11].
Since in Reference [11], we discussed some issues about
the key managements, we will not consider this aspect in
this paper. Furthermore, the proposed block cipher may be
more suitable for active RFID instead of passive RFID. The
proposed MRG-based cipher may not only have usefulness
as a cipher, but also it could be used in parts of other ciphers
as random number generators instead of a standalone cipher.

2. BACKGROUND AND RELATED
WORK

Deng [2] presents a series of efficient and portable MRGs
having very large period lengths of up to 1049031,

An MRG with k initial seeds, Xo, ..., X, is given by:

Xi=(@Xi-1+...+oqX;4) mod p, i>k (1)

The period length is an essential measure of the random-
ness of the generated numbers.

Deng [2] shows that if the characteristic polynomial of
the MRG in Equation (1) is a primitive polynomial (please
see Reference [3] for the definition of a primitive polyno-
mial), then the maximum period is reached and it is equal to

k
p—1

Also from Reference [2], the characteristic polynomial

of an MRG is given by:

F)=x—ax - —a 2)

Primitive polynomials define a recurrence relation that
can be used to generate a new pseudo-random number
from the k preceding ones. For example, given p = 2 and
the primitive polynomialx'® 4+ x* + 1, over GF (2), we start
with a pre-specified 10-bit seed that can be randomly cho-
sen. From the form of the primitive polynomial, we also
know the values of the first 10 coefficients o;, i =0, ..., 9,
the rest of the coefficients being 0. The seed is then xor-ed
together with the coefficient vector bit by bit to obtain the
next state of the generator. This process is repeated until the
initial state is reached again, and can be used to generate
a maximum of p'® — 1 = 2! — 1 = 1023 pseudo-random

Lightweight block cipher for WSNs and RFID

bits (please see Reference [3]) corresponding to p'® — 1
different pseudo-random numbers.

In general, for a primitive polynomial of degree k,
this process will generate at most p* — 1 pseudo-random
numbers before repeating the same sequence. p* — 1 is
called the period of the pseudo-random number gener-
ator. Much research has focused on finding primitive
characteristic polynomials because they lead to maximum
periods.

Knuth [12] gives a set of three necessary and sufficient
conditions under which f (x) given by Equation (2) is a
primitive polynomial:

(@) (—=D)*'ay must be a primitive root mod p;
(b) x® = (—1)* ' mod ged (f (x), p),
Rk, p)=(p*—1)/(p— 1)
(c) for each prime factor ¢ of R, the degree of x*/¢ mod
ged (f (x), p) is positive.

where

The first condition can be easily checked using the defi-
nition of a primitive root mod p. An integer A is a primitive
root mod p if there exists the smallest positive exponent
e such that (A° = 1 mod p)= p — 1. Moreover, based on
Reference [2], the number of primitive roots mod p is equal
to the number of integers between 1 and p — 1 that are
relatively prime to p — 1.

The second and third conditions pose some difficulty.
The third condition requires the decomposition of p* — 1
into prime factors, where p is a prime number. A common
approach is to choosep = 23! — 1, because it is the largest
prime number that can be stored as a signed integer in a 32-
bit computer word [38]. Given p = 23! — 1, Deng [38] has
found three values for k, k = 47, k = 643, andk = 1597,
for which R can be easily factored, as being the product
of one small prime number and a large one. Given these
values for k, the next step is trying to find primitive polyno-
mials having the degree equal to one of these three values.
Using the k values above, p* — 1 can be decomposed into
factors and primitive polynomials of degree k can then be
found.

For condition b) above, Deng [2] also presents an alter-
nate, more efficient method of checking the primality of the
characteristic polynomial associated with the MRG. This
new condition provides an early exit strategy if f (x) given
by Equation (2) is not a primitive polynomial.

Based on Reference [2], using conditions (a) and (c) and
the updated condition (b) one can find many primitive poly-
nomials of degree 1597, and therefore obtain a very high
period of approximately 1049031,

To achieve increased efficiency and portability, a series
of special types of MRGs which also exhibit the large
period properties have been studied [2,4-6][12,13]. Among
them, the DX-k-s generators [2,5] with k = 1537and s = 4
achieve the same period length as the general MRG from
Equation (1) (k = 1537) but are far more efficient having
only four non-zero terms. In addition, this class of genera-
tors possesses good statistical properties, such as a suitable
lattice structure [12].

Wirel. Commun. Mob. Comput. 2011; 11:254-266 © 2010 John Wiley & Sons, Ltd. 255

DOI: 10.1002/wem

Lightweight block cipher for WSNs and RFID

0

:5paag

X

‘_

A. Olteanu et al.

a,--,akbp—’(>

(Step1) < Pseudo-number generation: X,

< 4 byte plaintextp >

Step 2

Key X

7 (0 <i<3) ><7

Block Cipher

\

4 BytesX;

0 1 2 3

Step 3

C’ ciphertext

Figure 1. Message encryption of a 4 byte packet.

Paper [11] applies another type of generator, the LCG
to generate pseudo-random keys used in the design of a
lightweight block cipher suitable for sensor networks. The
LCG is a very popular, simpler pseudo-number generator,
given by:

Xp41 = ax, +b mod m 3)

Although the LCG has the advantage of being very sim-
ple, it does not exhibit a large period. The period of the
LCG is at most equal to the size of the modulo, m, and in
most cases less than that. This means that after at most m
numbers, the generated numbers will start repeating them-
selves. Obviously, a large modulo size will produce periods
long enough for any practical application. However, in the
context of limited processing power and storage which char-
acterize WSNs and RFIDs, smaller sizes for the modulo
and generator parameters can significantly increase the effi-
ciency of encryption schemes. This is the purpose of the
present paper. We show that the same or higher security
level can be achieved by using classes of MRGs which have
critically smaller parameter sizes but achieve significantly
larger period sizes.

3. THE BLOCK CIPHER
3.1. The cipher

As it is suggested in Reference [14], if an adversary has
access to five or more consecutive numbers generated using
Equation (3), then by the use of Plumstead’s Algorithm
[15] the parameters of the LCG can be found, and thus
the whole sequence can be discovered. The security of the
cipherin Reference [14] is achieved by adding random noise
and random permutations to the original data messages.
Therefore, itis sufficient to just keep the seeds Xy, . .., Xy—;
secret while «, ..., a;_; and p can be public, as shown in
Figure 1.

Likewise, if we substitute the LCG in Equation (3) with
our MRG from Equation (1), it suffices to keep the seeds
Xo, ..., Xy—1 private, while oy, ..., o and p can be pub-
lic. Note that in Section 8, we explain how to save the
space of the secret key by speeding MRG. Because p =
22! —1 and o) =0y =... = o < 2*? are popular val-
ues [38] for the modulo and parameter sizes, respectively,
we make the following restrictions: p < 2¥ and ay, ...,
oy < 2%,

Following, we describe the steps followed by our block
cipher, depicted in Figure 1.

256 Wirel. Commun. Mob. Comput. 2011; 11:254-266 © 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/wem

A.Olteanu etal.

Lightweight block cipher for WSNs and RFID

—H» S.=(0giy...0 11, p) ——HP|

Si=(0l,i,..0.1i P)

—H—| Si1=(0y+y... 011, p) ——HP

(E, G) (E, G) (E, G)
4 4
(Oi-b Pi-I) (Oi; Pi) (OH-Iy PH-I)
Notations:

0,'=E(Si, INFO,), INFOi=(Locati0n,...);P,-=G(S,-); Si =H(Si_])=(H(a0,,'_1),..., H(ak_I,,'_l), p),'

Figure 2. RFID tag sends (O;, P) to RFID reader and renews its key using P,.

Step 1—Pseudo-random Number Generation: We use the
MRG in Equation (1) to generate the 4 byte pseudo-random
numberX, as in Figure 1.

Step 2—The pseudo-random number generated this way
is embedded in the plaintext by simply using addition mod-
ulo 256 byte-by-byte, same as in Reference [3]. We use 4
bytes for one plaintext packet P. Let P = Py P, P, P; and
X = Xk0Xr1Xk2Xy 3 denote the 4 bytes of plaintext and
random noise, respectively. The ciphertext C = CyC;C,C3
is therefore obtained by adding the pseudo-random number
X to the plaintext P byte-by-byte and taking modulo 256:
P, + X;; mod 256 = C;, wherei =1, 2, 3, 4 For exam-
ple, assume that the plaintext to be encrypted is Stop.
In the ASCII decimal encoding, S =83, t =116, 0o =
110, and p = 112. Let X, be the following base 16
number: X, = 12 CF FF 4B,¢. Transformed in decimal,
these numbers represent 12, = 12, CF;¢ = 207, FFj¢ =
255, 4B = 75. Next, we obtain the ciphertext characters
by addition modulo 256:

83 + 12 mod 256 = 95
116 4+ 207 mod 256 = 67
110 4+ 255 mod 256 = 109
112 4+ 75 mod 256 = 187

Step 3—This step constructs a permutation using the bytes
of X, like in Reference [3], with the purpose of making
the uncovering of X, very difficult. The permutation will
be applied at the next step to the ciphertext C obtained
at Step 2. X, is a 4 byte pseudo-random number, X; =
Xi0Xk1 Xk 2X1 3. We define the permutation function IT =
07T T 73 as follows:

® TTp = ka() mod 4;
e m; =nmod 4,fori =1, ..., 3 where n is the smallest
integer larger or equal to Xy ; s.t. w; ¢ {mo, ..., Ti_1}.

Step 4—The ciphertext obtained in Step 2 is permuted
using the permutation generated at Step 3. That is, the bytes
of ciphertext C are scrambled such that the ith byte of IT (C)
becomes the 7;th byte of C.

There are two major differences between our algorithm
and the one in Reference [3]; first, the pseudo-random num-
ber generation formula is different: there are £ initial seeds
that need to be kept secret, instead of just one (in Section 7
we will show how these seeds can be easily generated), and
second, the block cipher has a size of 4 bytes instead of 16
bytes. The subsequent steps of the algorithm are very simi-
lar: at Step 2 noise is added to the plaintext, while Steps 3 and
4 are concerned with the addition of a pseudo-random per-
mutation in order to obtain security for the WSNs or RFID.

3.2. Privacy protection

As we know, one of the major drawbacks of RFID is that
it has privacy issue, i.e., attackers can query RFID tags to
obtain useful information, such as ID. Note that even though
ID can be encrypted, if the encrypted ID is static, it is easy
for attackers to track users against location privacy. In order
to protect privacy, we present a hash chain-based scheme
which uses our block cipher and show how it preserves
anonymity for RFID, shown in Figure 2.

Each RFID tag has an initial information &,
which is shared with the back-end database, and
s =(ao, .., -1,p) =H(so) = (H(ag0), H(ar-1,0), p).
The back-end database and the tag maintain a copy of the
information pair (ID, s) initially.

In the ith transaction with the reader, the RFID tag

e sends answer (O;, P;) to the reader, where, O; = E(S;,
INFO;), INFO,; = (Location,...), P;=G(S;), and
S; =H(S;—1) = (H(aoi-1), H(otx—1,i-1), p), shown in
Figure 2.

e renews key s;.; = H(s;) as determined from previous
key s;.

where H and G are hash functions. The reader sends (O;, P;)
to the back-end database. Since the information transmitted
between reader and back-end database are assumed to be
secured through a secure channel, the back-end database
can receive (O;, P;) successfully.

Wirel. Commun. Mob. Comput. 2011; 11:254-266 © 2010 John Wiley & Sons, Ltd. 257

DOI: 10.1002/wem

Lightweight block cipher for WSNs and RFID

Then the back-end database that received tag output (O;,
P;) from the reader conducts the following operations:

(1) Calculates P'; = G(S;_;)) for each §; in the main-
tained list, and checks if P'; = P;?

(2) If a match is found, then gets the corresponding ID
and calculates S; = H(S;_,)). The ID and calculated
s; will be used in the following authentication mech-
anism. Then updates the stored information pair (ID,
s;—1) to (ID, s;). If a match is not found, the packets
from tag will be dropped.

(3) Starts authentication process.

4. SECURITY ANALYSIS

We assess the security of our scheme by following the basic
goals of confidentiality, authenticity, and privacy protec-
tion. With respect to confidentiality, we are concerned with
concealing the contents of the data from an attacker. This
process involves encryption and possibly randomization
to help prevent multiple encryptions of the same plain-
text from looking similar, i.e., semantic security. Integrity
is concerned with being able to detect if a message has
been tampered with while authenticity translates into mak-
ing sure that the message was indeed sent by its intended
sender.

4.1. Confidentiality

Each byte X, ;, j =1,...,4 of X;is a number between 0
and 255. Therefore each byte of X,can take 256 different
values. The permutation IT is obtained through a many-to-
one mapping. That is, there are 2564/4! ~ 232/24 A 2%
different values that generate the same permutation byte
7;. Therefore, even if an attacker obtains the permutation
function, finding the corresponding pseudo-random number
that generates it is computationally infeasible.

We can further complicate the problem by using only half
the bytes (22 = 4) in X to generate the permutation. Even if
these bytes are recovered, this will not lead to revealing the
value of X;. According to the birthday attack, whenn = 4,
the smallest index number & for which X, ; mod 16 has more
than 50% chance of colliding with one of the previously

generated integers {7, ..., 7;_1},is:k & 1 /2nln (1/2) —

1~1.35
So starting from 7y, the value of m; is more than 50%
likely to be different from that of X ;.

4.2. Authenticity

Lets consider a replay attack on our cipher. In this type
of attack, a third party can eavesdrop on messages sent
between two nodes and then replay the messages at a

A. Olteanu et al.

would be to use a counter and include it with every mes-
sage. The drawbacks of this approach are the necessity of
a counter synchronization protocol and the maintenance of
a replay table containing the last value from every sender.
The second approach consists in using a different key for
the encryption of the next data message. This process intro-
duces no extra overhead. However, it does not work very
well in an environment with low packet delivery ratio. A
solution to this problem would be to use rekeying with a
reduced frequency.

Note that both approaches are also useful in achieving
semantic security.

The permutation function used in Step 3 alters the order
of the message’s content, making it invulnerable to known
plaintext attacks and to direct ciphertext analysis. In the
context of a rekeying mechanism, in which a different
encryption key is used with every transmission, chosen-
plaintext attacks also do not apply.

4.3. Data aggregation

Let py, p» be two plaintext samples from our data set. An
encryption transformation is additively homomorphic if:

p1+ p2 = D(E(p1)+ E(p2)) (€]

Here D denotes decryption, E denotes encryption, and +
signifies addition.

For our block cipher, property (4) stands if the same key
is used for the encryption of the data to be aggregated.

In this case, data aggregation in WSNs by intermedi-
ate nodes is possible for messages sent between a source
and destination. The messages need not be decrypted at
every hop in order to achieve data aggregation. Instead, the
encryption transformation allows for direct aggregation of
the encrypted data. Moreover, in this case, secret key shar-
ing among data aggregators is no longer necessary, saving
space and resources.

Consider the following example. Suppose that p;, p,
translate to the base 10 numbers: p; =9 10 11 12
and p, =83 116 110 112. Also, consider that the
encryption key, the same for both plaintext messages,
is: X =12 207 255 75. Then, the corresponding
ciphertexts, obtained by addition modulo 256, are: C| =
21 217 10 87and C, =95 67 109 187, respec-
tively. The permutation function is

0123

= (0 301 2)
After applying the permutation to C; and C,, we
obtain ciphertexts: C; =21 87 217 10 and C) =

95 187 67 109, respectively. So far we have com-
puted:

E =C;=21 87 217 10 and
future time. We present two approaches to prevent such (1) !
an attack. The first approach and the most common one E(p))=C,=95 187 67 109
258 Wirel. Commun. Mob. Comput. 2011; 11:254-266 © 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/wem

A.Olteanu etal.

The sum of the two obtained ciphertexts gives us:
E(p)+E(py)=116 8 28 119

In order to decrypt the sum we need to first apply the

012 3) which gives

. . o
inverse permutation 17" = (02 3 1

us:
O YE(p)+E(@)=116 28 119 18

We extract the plaintext by doubling the values of the key
and subtracting them byte by byte, which gives us:

(116 — 24) mod 256 = 92
(28 — 416) mod 256 = 126
(119 — 510) mod 256 = 121

(18 — 150) mod 256 = 124

For the left hand side of Equation (4), adding the plain-
texts together gives us: p; +p, =92 126 121 124,
which proves that Equation (4) stands.

Finding the inverse permutation and then extracting the
plaintext given the encryption key is straightforward.

4.4. Privacy protection

The proposed privacy protection scheme shown in Figure 2
achieves ID anonymity by never sending ID in plain or in
some fixed form. Second, since the tag output is the result
of one-way hash function, it keeps changing and is indis-
tinguishable from truly random values. Thus the scheme
avoids tag tracking. Third, we use the hash chain technique
to renew the secret information contained in the tag, thus
forward security is achieved.

5. ANALYSIS OF THE NUMBERS OF
BASIC OPERATIONS OF OUR
CIPHER

We assess the efficiency and power consumption of our
block cipher by computing the number of basic operations
that are being performed. This evaluation has two parts
corresponding to generating the pseudo-random number
(Section 3, Step 1) and the block cipher (Section 3, Steps
2, 3, and 4), respectively. We compute the number of basic
operations for each part in the following sections.

5.1. Number of basic operations for
generating one pseudo-random number

Lightweight block cipher for WSNs and RFID

be the bit string representing «t;, i = 1, ..., k. We can write
Equation (1) as

(Ol]Xk,1 +...+ Oth()) mod P
= (a1 Xy mod p) + ...+ (a1 X; mod p)
—|—(akX1 mod p)

In addition, as

0[,'Xk_,' mod p= (0{,-_2()229Xk—i +...+ ai,ijXk—i + ...

—l—a,-’OZOXk,,-) mod 14

and
274X, ;mod p = ((ZXk_i mod p) x Z-f) mod p

Based on these observations, we can compute the pseudo-
random number X, by the following algorithm, using only
basic operations:

e There are 2k + 1fetches.

o We consider (ozk,,-,j = 1) in 50% of the cases, so line
9 is performed k * 30 / 2 times for each addition and
each subtraction.

e Line 10 is performed 30 * k times for each shift and
each subtraction.

e Line 12 is performed k times for each addition and
each subtraction.

o We need one store for Xj.

o Total basic operations:

o k+1)+2%k*x15+2%kx30+2xk+1=
94k + 2 basic operations.

o If we consider k = 1597 like in Reference [2], then
we need 150 120 basic operations to generate one
pseudo-random number.

o However, if we use k = 47 (another value for k
suggested in Reference [2]), then the number of
operations becomes 4420, which is a competitive
value.

5.2. Number of basic operations for the
MRG cipher

Our block cipher involves:

e One 32 bit XOR in Step 2.
e A Z,to Z4permutation construction and its application
to 4 bytes. We need
o Maximum 9 8-bit comparisons and 6 8-bit additions
(for the while loop index) for construction the per-
mutation. We consider an 8-bit comparison as an

Based on Reference [2], we choose the coefficients «; < 8-bit XOR.

230 i =1,..., k. The analysis below follows the one in o 4 8-bit fetches and 4 8-bit stores for applying the
Reference [3] very closely. Let a9 ... ;... 020 1o permutation.

Wirel. Commun. Mob. Comput. 2011; 11:254-266 © 2010 John Wiley & Sons, Ltd. 259

DOI: 10.1002/wem

Lightweight block cipher for WSNs and RFID

—_

input X, X,,...X, ,a,,0,,...a,,p; //2k+1 fetch ops
X, «<0;

for (i=0tok—1)

R

X «~0;

end for;
for (i=0tok—1)
for (j=0t029)

if (a,H/ = 1)

® 3 > w

// 1add + 1subtr

N

X, ,<modlx, ,+X,.p);

//1 shift + 1 subtraction
10: X, < mod(2X,,p);
11: end for j;

// 1add + lsubtr

12: X, < mod(X, +X, .p);
13: end for i;
14: output X,; /I'1 store

e There are 2k +1fetches.

A. Olteanu et al.

e We consider (, ,, =1) in 50% of the cases, so line 9 is performed k*30/2 times for each addition and

each subtraction.

e Line 10 is performed 30*k times for each shift and each subtraction.

e Line 12 is performed & times for each addition and each subtraction.

e We need one store for X,.

e Total basic operations:

0 (2k+1)+2%k*15+2%k*30+2%k +1=94k +2 basic operations.

o Ifwe consider k =1597 like in [2], then we need 150120 basic ops. to generate one pseudo-random

number.

o However, if we use k=47, (another value for ¥ suggested in [2]), then the number of ops

becomes 4420, which is a competitive value.

6. PERFORMANCE ANALYSIS

Table I shows the number of basic operations necessary to
construct the block cipher in Section 3. We analyze how
many addition, XOR, shift, fetch, and store operations are
needed on 128-bit, 32-bit, and 8-bit processors. It may also
be of interest to see how the algorithm performs for packet
sizes larger than 4 bytes. We present the overhead intro-
duced when the packet size is 16 and 32 bytes on an 8-bit
processor.

We can see that because our block cipher has a size of
4 bytes, no overhead is introduced when using a 32-bit
processor as opposed to a 128-bit processor. For the 8-
bit processor, 4-byte block, only the number of XORs is
increased because one of the 10 XOR operations is per-
formed on 32 bits, and it turns into eight XOR operations
on an 8-bit processor. While the other operations stay the
same. When the size of the packets is increased from 4

to 16 bytes (4 times larger) then the number of operations
naturally becomes 4 times larger.

Table II summarizes the basic operations needed to gen-
erate one pseudo-random number, described in Section 3.1.
The results are presented as a function of k, based on the
MRG recursive formula (1). Again, the 32-bit processor
introduces no overhead compared to the 128-bit processor,
while on an 8-bit processor, eight times more operations
need to be performed.

Table III shows the breakdown of the number of
operations of the LCG based cipher from [3]. The numbers
are mainly taken from the analysis in Reference [3] and
represent the operations needed both for the block cipher
and for generating one random number X, using the LCG
formula (3).

‘We compare our results with the ones for the LCG-based
cipher in Table IV. We can see that the size of k makes a
huge difference in the efficiency of our scheme and that even

260 Wirel. Commun. Mob. Comput. 2011; 11:254-266 © 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/wem

A.Olteanu etal.

Lightweight block cipher for WSNs and RFID

Table I. Number of basic operations in an MRG-based cipher.

128-bit processor

8-bit processor,

8-bit processor, 8-bit processor, 8-bit processor,

Operation (32-bit processor), 4 byte block 4 byte block 4 byte packet 16 byte packet 32 byte packet
Addition 0 0 0 0 0

XOR 1+9=10 (44+4)+9=17 17 68 136
Shift 0 0 0 0 0

Fetch 4 4 4 16 32

Store 4 4 4 16 32

Total 18 25 25 100 200

Table Il. Number of basic operations for generating one 32-bit MRG pseudo-random number.

Number of Equivalent 128-bit processor, 32-bit processor, 8-bit processor,
MRG operations MRG operations operations 4 byte block 4 byte block 4 byte block
32-bit addition k Addition 30k+60k+2k=92k 92k (92 x8)k =736k
32-bit shift 0 Shift 30k 30k 240 kk
32-bit fetch 2k+1 Fetch 2k+1 2k+1 16k+8
32-bit store 1 Store 1 1 8
32-bit multiplication k—1
32-bit moduli 1
Total 4k 124k +2 124k +2 992k + 16
Table Ill. Number of basic operations in an LCG-based cipher, plus the operations for generating 128-bits LCG pseudo-random

numbers.

128-bit processor,

32-bit processor,

8-bit processor, 8-bit processor, 8-bit processor,

Operation 16 byte block 16 byte block 16 byte block 16 byte packet 32 byte packet
Addition 0 0 0 0 0
XOR 31 38 62 62 124
Shift 0 0 0 0 0
Fetch 31 38 62 62 124
Store 31 38 62 62 124
Total cipher operations 93 14 186 186 372
Total basic operations for 197 1584 6304

an LCG pseudo-random

number

Total 290 1698 6490 6490 6676

moderate values for &, such as k = 47 are not practical.

The conclusion of our performance analysis is that k
should be kept small in order to make our cipher efficient.
The overhead introduced by using the MRG to generate
pseudo-random numbers is essentially k times larger than
that of using the LCG, when working with equal sized data
sets.

7. SPECIAL CLASSES OF
GENERATORS

The analysis above suggests that it may be of interest
to search for more efficient types of MRGs which still
lead to large periods, like the general MRG, but which
also posses the advantage of having significantly fewer

Table IV. Number of basic operations in an LCG vs. an MRG-based cipher (Legends: P: processor BP = byte packet).

Cipher 128-bit P 4 BP 32-bit kB 4 BP 8-bit P 4BP 8-bit P 16BP 8-bit P 32 BP
LCG-cipher 290 1698 6490 6490 6676
MRG-cipher 124k +2+18 124k +2+418 992k + 16 + 25 992k + 16 4+ 100 992k + 16 4+ 200
MRG-cipher K=47 4438 4438 356385 35460 35560
MRG-cipher k=6 584 584 4553 4628 4728

Wirel. Commun. Mob. Comput. 2011; 11:254-266 © 2010 John Wiley & Sons, Ltd. 261

DOI: 10.1002/wem

Lightweight block cipher for WSNs and RFID

terms in the recursive formula. This means the overhead
gets reduced while the large period property of MRGs is
preserved.

We present below two different classes of MRGs that
have these properties and analyze their advantages.

7.1. FMRG

Consider the MRG given by Equation (1). For the pur-
poses of increasing the efficiency of the MRG we can use
the idea stated in Reference [6], making as many of the
o, coefficients equal to 0. Specifically, if we choosea; =
-1, o;,=0 for 2<i<k-—1, and o = B,then
we obtain a special form of MRG, called fast MRG
(FMRG), as proposed in Reference [4]:
Xi=BX;y—X;-)mod p, i>k Q)
This generator is very similar in form to the LCG in
Equation (3), with the following observations:

e an increment is subtracted while in Equation (3) the
increment is added;

e the FMRG increment is variable while in the LCG
formula the increment is constant;

e because we are subtracting two positive integers, the
FMRG has the advantage: it cannot produce an over-
flow. While the addition in the LCG can cause an
overflow.

If in addition we want the FMRG to be portable, then a
known good solution to the problem is to choose the coef-
ficient B such that B < ./p [4,6]. Given p = 23" — 1 and
condition B < ,/p, several values have been found for B
(please see Reference [4]), such that the MRG has maxi-
mum period p* — 1. In particular, the value B = 16807 has
been used extensively in empirical studies.

If we consider the computational complexity of the two
ciphers, one based on the LCG, the other on the FMRG,
obviously, there is no difference. The only difference is
introduced by the fact that the size of the modulus is signif-
icantly smaller for the FMRG and so is the coefficientB, as
compared to the corresponding coefficient a of the LCG.

However, if we consider the period of the two generators,
the FMRG is significantly better.

For LCG: x; = 16807x;_; mod (23! — 1), the period is
231 — 1 = 2147483646.

For FMRG: (k=2) x; = (39613x;_, — x;_;) mod (2°' —
1) the period is (2*' — 1)” — 1 = 4611686014132420608.

7.2. DX-k-s generators

It has been shown that MRGs display a lattice structure, that
is, the consecutive k different values generated lie on a lim-
ited number dof equidistant parallel hyperplanes, instead of
occupying k? points placed uniformly in a d-dimensional

A. Olteanu et al.

cube. A necessary condition for a good lattice structure is
k
that the sum of squares of the coefficients o7 is large

i=1
[12]. Consequently, one drawback of FMRGs is that they
do not exhibit a good lattice structure.

Therefore, we present another special class of MRGs,
called DX-k-s generators which extend FMRGs and are
obtained by choosing s non-zero equal coefficients (instead
of just 2 with FMRGs), equally spaced at k / (s — 1) distance
while the rest of the coefficients are zeros [5].

The general form of the DX-k-s generators is

Xi=B8B (Xifk + X [—2k/(s—1) | +..+ X [2k/(s—1)] +
+Xi_|ije-n) + Xio) mod p, i >k (6)

It has been shown that an MRG with maximum period
has the property of equi-distribution up to dimension
k[13].

Paper [S] shows a complete factorization for k =
120, and presents values for B that lead to maximum
periods. This way, the period has been extended to
P —1~0.679-10"?° and in addition DX-120 has
the property of equi-distribution up to dimension 120.
Values 1, 2, 3, and 4 are considered for s. The spe-
cial case DX-120-4 generator is presented below: X; =
B(Xi_120 + Xi_g0 + Xi_40 + X;—1) mod p.

As stated in Reference [5], the DX-120-4 generator is
10-15% less efficient than the DX-120-1 generator, but it
exhibits better statistical properties, like a more suitable
lattice structure.

Compared to an FMRG with k = 4, the DX-120-4 above
also has four terms and necessitates the same number of
basic operations, but it produces a p'* — 1 long period
(compared to p* — 1 for the MRG) and therefore it con-
stitutes a significant improvement while introducing no
overhead.

Furthermore, values for B that lead to maximum periods
are presented for DX-k-s generators, for k = 643 and k =
1597 and s € {1, 2, 3, 4} [2]. While generators: DX-643-
4 (k=0643, s=4), X; = B(Xi_¢43 + Xi—aog + Xi_214 +
X;—1)mod p and DX-1597-4 (k=1597, s=4), X, =
B(X;_1597 + Xi—1064 + Xi—s32 + X;_1) mod p introduce no
overhead compared to the FMRG-4, they lead to maximum
periods of approximately 109%4and 10'#%3! respectively.
Table V summarizes the performance of these special types
of generators.

8. SPEEDING THE MRG

In this section, we show some efficient ways to initialize the
seed vector Xy, ..., X;—_1 and also mention proposed values
for the coefficients which make the generator efficient and
portable.

One approach is to use an LCG to generate the k seeds
of the MRG [5]. We can start with an initial value of 1 and
use the LCG with a = 7° and m = 23! — 1, which easily

262 Wirel. Commun. Mob. Comput. 2011; 11:254-266 © 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/wem

A.Olteanu etal.

©
S
o
© o
oM
S
~ | PR
il B
LR
® | o
®
©
o
: 2
2l 5|90
~ e
%"\9@:_
CLD_OFOQ_
o)
= - =
_oologm
Il %)
o ©
m
=
o
[2]
%]
3
o
o o)
Slae |3,
ol el R
5| | o +
T a| © ¢
C“—"—O
CD-—+_
S| @
ol b | &=
— o
= ™
< ©
<
5)
C
o
°
RS
c
©
o N
ol o | ©
| ol
Sl e
S| I+
ol 2| T ©
S| & 2R
S <
Ol ™| ®©
o 5]
@ -
%]
@©
2
2]
O
Jasd
o
> &8
SN N
ol =8+
Ol 5| &
| I ()]
QO |~
Sl 9| o
ol T | <
C
9
=
©
o
o)
Q
o
ol g
%]
8| 2
21e| - _
2181
s
) = |
ol 0|9 &
cl | v
=]
=z
>
2
s
'—
[
o ©
< C
S G
.| a8
g‘-.".—’
[ONG}
=2
= O O
Ol a4

Wirel. Commun. Mob. Comput. 2011
DOI: 10.1002/wem

(992k + 16) + 25 (992k + 16) + 100 (992k + 16) + 200

(124k +2) +18

(124k+2)+18

DX-1587-k

1208
4184

1108
4084

144 144 1033
516 4009

516

(22 1) =1

FMRG-cipher

(231—1)k—1

DX-k-4 cipher k € {120, 643, 1597}

Lightweight block cipher for WSNs and RFID

generates a sequence of 1597 initial seeds, if we consider
the DX-1597-4 generator.

Another way to easily seed the MRG is to start with a 4k-
byte number, which can be randomly generated, and assign
the first 4 bytes to Xy, the next 4 bytes to X, and the last
4 bytes to X;_;. Keep in mind that we are working with
keys that are 32-bits long. Consider the DX-k-4 special-type
MRG, which has proved the most efficient in our analysis.
We therefore need one 16-bytes long number to start with
and we can use it to seed our generator.

With respect to the coefficients, having many zeros is
not desirable as a close to zero vector may lead to many
subsequent generated vectors staying in the vicinity of zero,
which detriments randomness. As shown in subsection 7.2,
a good solution is to make all non-zero coefficients equal
with possibly one exception [5]. In this case, only one value
is stored, instead of k different values, and, in addition,
only one multiplication needs to be performed (please see
Equation (5)). Such suitable values leading to maximum
periods have been found via computer generation and are
presented in References [2,5].

9. RFID VS. WSN

An RFID tag is a small electronic device that serves as
a unique identifier for an object. Most RFID applications
are in the area of inventory tracking and management, auto-
mated logging, [16], as well as wireless telemedicine [8,10].
The main components are a transponder of RFID tag and
a transceiver of RFID reader. The reader broadcasts a sig-
nal in a range usually up to 20 feet. When receiving the
signal, tags can respond by sending information consisting
for example in the ID number of the object. RFID tags are
even more limited devices than WSNs in terms of cost, area,
and power. As noted in References [11,16], the RFID tag
ID numbers are short in length, usually, 8-16 bytes. Simi-
lar to WSNss, RFIDs are vulnerable to security attacks such
as eavesdropping, unauthorized tag reading, and tracking.
Since RFID scanners are very portable, the RFID tags can
be read even after the object has left the supply chain with-
out the knowledge of the individual carrying it. Moreover,
an intruder could keep track of locations of an individual
by repeatedly querying the item’s tag.

Paper [11] proposes a lightweight block cipher for RFID
systems. In their scheme, the 16-bytes size of the block
cipher in Reference [3] is replaced with a more general
2L-byte size. L can then be tuned so that the performance
requirements are met while maintaining the security of the
encryption at the same time.

Our block cipher is 4 bytes long, and so are our encryption
keys. The extremely short length of our cipher makes it a
suitable application for RFID communications. The size of
the block cipher is determined by the size of the modulo,
which in our case is p = 23! — 1, thus in our scheme L = 2.

Clearly, as L increases, the security of the scheme
increases. However, as stated in Reference [11], a large
modulo size significantly contributes to the loss in

; 11:254-266 © 2010 John Wiley & Sons, Ltd. 263

Lightweight block cipher for WSNs and RFID

efficiency. In order to keep the key secret, it is more
important to keep the parameters secret than to increase
the modulo size. The strength of our idea lies in using an
MRG to generate the encryption key. This allows for using
small 4-byte numbers for the modulo and the generator
parameters, that is, working with a four times smaller
modulo size, while achieving an approximately 10°°%?
times larger period (see subsection 7.2).). The period length
is a measure of the randomness of our key and therefore of
the scheme’s security. Basic RFID protocols which achieve
mutual authentication between the reader and the tag [11]
rely on the MRG to encrypt information sent between the
tag and the reader. The efficiency of these protocols is thus
directly affected by the efficiency of the MRG block cipher.

The privacy protection scheme in Section 3 is also suit-
able for RFID. The scheme can be used to achieve tag ID
anonymity and forward security and to avoid tag tracking.
The ID tag is never sent in plaintext and multiple encryp-
tions of the same ID result in different ciphertexts, making
impossible a direct ciphertext attack. This way semantic
security is achieved and tag tracking is avoided. By using
the hash chain technique, the secret information contained
in the tag is permanently renewed, making the scheme invul-
nerable to chosen plaintext attacks and achieving security
of the forwarded information.

10. CONCLUSIONS

We have constructed a block cipher based on the MRG. The
MRG is being used for generating pseudo-random num-
bers with very large periods. The generated pseudo-random
numbers are in turn used in our encryption scheme in order
to add noise to the plaintext and are kept secret by the
use of a pseudo-random permutation which works on the
bytes of each pseudo-random number. We have compared
our scheme with the one in Reference [3] and presented
the results in terms of the number of basic operations of
both ciphers. It is obvious that the computing time of an
MRG is about £ times longer than that of an LCG. How-
ever, the advantage of our scheme comes from using a very
large period, which makes the generated numbers hard to
uncover. Another advantage is given by the fact that by
using a more complicated recursive formula, we can use
smaller numbers for p and the coefficients o, ..., o. We
can thus assume: p < 232 and «y, ..., a; < 2°2, while in
Reference [3], the corresponding modulom and coefficient
a are: 29 < a < 2% and 2'2 < m < 2'?8. Therefore, our
block cipher has smaller size of 4 bytes while the block
cipher in Reference [3] has size 16 bytes.

Since our block size is only 4 bytes, our algorithm proves
more effective if implemented on 32-bit processors, because
there will be no increase in overhead in this case.

The choice of k is very important but we can see that even
a small value like 6 can lead to a larger period than that of
the LCG in Reference [3], while introducing less overhead.

Furthermore, it has been shown that by choosing most
of the MRG’s coefficients equal to 0, particular classes

A. Olteanu et al.

on MRGs, called FMRGs and DX-k-s generators can be
obtained. These special generators are very similar in form
and computational complexity to the LCGs, but in addition,
they have the advantage of producing much larger periods.

We have found large periods, less or no extra overhead.
Also, smaller numbers, less storage, memory, and larger
periods enhanced security. Particularly important in WSNs
and RFIDs where power consumption, memory and storage
space are critical. They achieve enhanced security while
consuming less resource!

ACKNOWLEDGEMENTS

This work was supported in part by the US National
Science Foundation (NSF) under grants CNS-0716211,
CNS-0737325, and CCF-0829827.

REFERENCES

1. Bellare M, Kilian J, Rogaway P. The security of the
cipher block chaining message authentication code.
Journal of Computer and System Sciences 2000; 61(3):
363-399.

2. Deng LY, Li H, Shiau JH, Tsai G. Design and Imple-
mentation of Efficient and Portable Multiple Recursive
Generators with Few Zero Coefficients. Springer: Berlin,
Heidelberg, 2006.

3. Foulley J-L. Multiple recursive random generators and
their APL programmes, Technical Report, INRA-SGQA,
2005.

4. Lidl R, Niederreiter H. Introduction to Finite Fields and
Their Applications, Cambridge University Press: Cam-
bridge, UK, 1986.

5. Watson EJ. Primitive polynomials (mod 2). Mathematics
of Computation 1962; 16: 368-369.

6. Sun B, Xiao Y, Li C-C, Chen H, Yang TA. Secu-
rity co-existence of wireless sensor networks and RFID
for pervasive computing. Computer Communications
Journal Special Issue on Secure Multi-Mode Systems
and their Applications for Pervasive Computing, 2008;
31(18): 4294-4303.

7. Hu F, Jiang M, Xiao Y. Low-cost wireless sensor
networks for remote cardiac patients monitoring applica-
tions. Journal of Wireless Communications and Mobile
Computing 2008; 8(4): 513-529.

8. www.answers.com/topic/field-theory

9. www.answers.com/topic/simple-extension-1

10. www.answers.com/topic/field-extension

11. Xiao Y. Editorial. International Journal of Security and
Networks, 2006; 1(1/2): 1-1.

12. Shehab M, Bertino E, Ghafoor A. Workflow autho-
risation in mediator-free environments. International
Journal of Security and Networks 2006; 1(1/2): 2-12.

264 Wirel. Commun. Mob. Comput. 2011; 11:254-266 © 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/wem

A.Olteanu etal.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Jung EJ, Gouda MG. Vulnerability analysis of certificate
graphs. International Journal of Security and Networks
2006; 1(1/2): 13-23.

Kiayias A, Yung M. Secure scalable group signature with
dynamic joins and separable authorities. International
Journal of Security and Networks 2006; 1(1/2): 24-45.
Franklin M. A survey of key evolving cryptosystems.
International Journal of Security and Networks 2006;
1(1/2): 46-53.

Hamadeh I, Kesidis G. A taxonomy of internet traceback.
International Journal of Security and Networks 2006;
1(1/2): 54-61.

Jhumka A, Freiling F, Fetzer C, Suri N. An approach to
synthesise safe systems. International Journal of Secu-
rity and Networks 2006; 1(1/2): 62-74.

Evans JB, Wang W, Ewy BJ, Wireless networking secu-
rity: open issues in trust, management, interoperation
and measurement. International Journal of Security and
Networks 2006; 1(1/2): 84-94.

Englund H, Johansson T. Three ways to mount distin-
guishing attacks on irregularly clocked stream ciphers.
International Journal of Security and Networks 2006;
1(1/2): 95-102.

Zhu B, Jajodia S, Kankanhalli MS. Building trust in
peer-to-peer systems: a review. International Journal of
Security and Networks 2006; 1(1/2): 103-112.
Ramkumar M Memon N. Secure collaborations over
message boards. International Journal of Security and
Networks 2006; 1(1/2): 113-124.

Xiao Y, Jia X, Sun B, Du X. Editorial: security issues on
sensor networks. International Journal of Security and
Networks 2006; 1(3/4): 125-126.

Wang H, Sheng B, Li Q. Elliptic curve cryptography-
based access control. International Journal of Security
and Networks 2006; 1(3/4): 127-137.

Zheng J, Li J, Lee MJ, Michael A. A lightweight
encryption and authentication scheme for wireless sen-
sor networks. International Journal of Security and
Networks 2006; 1(3/4): 138-146.

Al-Karaki JN. Analysis of routing security-energy trade-
offs in wireless sensor networks. International Journal
of Security and Networks 2006; 1(3/4): 147-157.

Araz O, Qi H. Load-balanced key establishment method-
ologies in wireless sensor networks. International
Journal of Security and Networks 2006; 1(3/4): 158-
166.

Deng J, Han R, Mishra S. Limiting DoS attacks dur-
ing multihop data delivery in wireless sensor networks.
International Journal of Security and Networks 2006;
1(3/4): 167-178.

Hwu J-S, Hsu S-F, Lin Y-B, Chen R-J. End-to-end
security mechanisms for SMS. International Journal of
Security and Networks 2006; 1(3/4): 177-183.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Wirel. Commun. Mob. Comput. 2011; 11:254-266 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/wem

Lightweight block cipher for WSNs and RFID

Wang X. The loop fallacy and deterministic serialisation
in tracing intrusion connections through stepping stones.
International Journal of Security and Networks 2006;
1(3/4): 184-197.

Jiang Y, Lin C, Shi M, Shen XS. A self-encryption
authentication protocol for teleconference services.
International Journal of Security and Networks 2006;
1(3/4): 198-205.

Owens SF, Levary RR. An adaptive expert system
approach for intrusion detection. International Journal
of Security and Networks 2006; 1(3/4): 206-217.

Chen Y, Susilo W, Mu Y. Convertible identity-based
anonymous designated ring signatures. International
Journal of Security and Networks 2006; 1(3/4): 218-225.
Teo JCM Tan CH, Ng JM. Low-power authenticated
group key agreement for heterogeneous wireless net-
works. International Journal of Security and Networks
2006; 1(3/4): 226-236.

Tan CH. A new signature scheme without random ora-
cles. International Journal of Security and Networks
2006; 1(3/4): 237-242.

Liu Y, Comaniciu C. Man H. Modelling misbehaviour
in ad hoc networks: a game theoretic approach for intru-
sion detection. International Journal of Security and
Networks 2006; 1(3/4): 243-254.

Karyotis V, Papavassiliou S, Grammatikou M, Maglaris
V. A novel framework for mobile attack strategy mod-
elling and vulnerability analysis in wireless ad hoc
networks. International Journal of Security and Net-
works 2006; 1(3/4): 255-265.

Payne WH, Rabung JR, Bogyo T. Coding the lehmer
pseudo number generator. Communications of the Asso-
ciation for Computing Machinery 1969; 12: 85-86.
Deng LY. Efficient and portable multiple recursive gen-
erators of large order. ACM Transactions on Modeling
and Computer Simulation 2005; 15(1): 1-13.

Primitive Available at:
[16

polynomial.
en.wikipedia.org/wiki/Primitive_polynomial
December 2007].

Deng LY, Lin DKJ. Random number generation for the
new century. American Statistician 2000; 54(2): 145-
150.

Deng LY, Xu HQ. A system of high-dimensional, effi-
cient, long-cycle and portable uniform random number
generators. ACM Transactions on Modeling and Com-
puter Simulation 2003; 13(4): 299-309.

Sun B, Li C-C, Xiao Y. A lightweight secure solution for
RFID, Proceedings of IEEE GLOBECOM, 2006.

Lei M, Xiao Y, Vrbsky SV, Li C-C, Liu L. A Virtual
Password Scheme to Protect Passwords, Proceedings of
IEEE ICC, 2008.

HuF, Celentano L, Xiao Y. Error-resistant RFID-assisted
wireless sensor networks for cardiac tele-healthcare.

265

Lightweight block cipher for WSNs and RFID

Wireless Communications and Mobile Computing
(WCMC) 2009; 9(1): 85-101.

45. Hu F, Jiang M, Celentano L, Xiao Y. Robust medical ad
hoc sensor networks (MASN) with wavelet-based ECG
data mining. Ad Hoc Networks 2008; 6(7): 986-1012.

46. Xiao Y, Shen X, Sun B, Cai L. Security and privacy in
RFID and applications in telemedicine. IEEE Commu-
nications Magazine, Special issue on Quality Assurance
and Devices in Telemedicine, 2006; 64-72.

47. Sun B, Li C, Wu K, Xiao Y. A lightweight secure
protocol for wireless sensor networks. Computer
Communications Journal Special Issue on Wireless Sen-
sor Networks: Performance, Reliability, Security and
Beyond, 2006; 29(13-14): 2556-2568.

48. Knuth DE. The Art of Computer Programming, Vol. 2:
Seminumerical Algorithms (3rd edn), Addison-Wesley,
Reading, MA, 1988.

49. L’Ecuyer P. Bad lattice structures for vectors of non-
successive values produced by some linear recurrences.
INFORMS Journal on Computing 1997; 9: 57-60.

50. Plumstead JP. (Boyar), Inferring a sequence generated
by a linear congruence, Proceedings of the 23rd Annual
1IEEE Symposium on the Foundations of Computer Sci-
ence, 1982; pp. 153-159.

51. Marsaglia G, Tsang WW, Wang J. Fast generation of dis-
crete random variables. Journal of Statistical Software
2004; 11(3): 1-11.

52. Xiao Y, Yu S, Wu K, Ni Q, Janecek C, Nordstad J. Radio
frequency identification: technologies, applications, and
research issues. Journal of Wireless Communications
and Mobile Computing 2007; 7(4): 457-472.

Authors’ Biographies

Y o\

Alina Olteanu received her B.S.
degree in Computer Science and her
M.S. degree in Applied Mathematics
from the University of Bucharest and
| Polytechnic University of Bucharest,
Romania in 2003 and 2005, respec-
tively, and earned her Ph.D. degree in
Computer Science from the University
of Alabama, U.S.A. in 2009. Her research interests are in
the areas of wireless network security, network performance
optimization, and lightweight cryptography.

Dr Yang Xiao is currently with the
Department of Computer Science at
the University of Alabama. He cur-
rently serves as Editor-in-Chief for
International Journal of Security and
Networks (IJSN) and International
s Journal of Sensor Networks (1IJSNet).
i He was the founder and Editor-in-Chief
(2007-2009) for International Journal

A. Olteanu et al.

of Telemedicine and Applications (IJ'TA). His research areas
are security, telemedicine, robot, sensor networks, and wire-
less networks. He has published more than 300 papers in
major journals, refereed conference proceedings, and book
chapters related to these research areas. He is a senior mem-
ber of the IEEE. He was a voting member of the IEEE 802.11
Working Group from 2001 to 2004.

Dr Fei Hu is currently an associate pro-
fessor in the Department of Electrical
and Computer Engineering at the Uni-
versity of Alabama, Tuscaloosa, AL,
U.S.A. His research interests are wire-
less networks, wireless security, and
their applications in Bio-Medicine. His
research has been supported by NSF,
Cisco, Sprint, and other sources. He
obtained his first Ph.D. degree at Shanghai Tongji Univer-
sity, China in Signal Processing (in 1999), and second Ph.D.
degree at Clarkson University (New York State) in the field
of Electrical and Computer Engineering (in 2002).

Bo Sun is an associate professor with
the Department of Computer Science,
Lamar University, Beaumont, Texas.
His research interests include security
issues of wireless networks and other
communications systems. His research
has been supported by the National Sci-
ence Foundation and the 2006 Texas
Advanced Research Program. He is a
member of the IEEE.

Dr Hongmei Deng currently is a
Lead Research Scientist at Intelli-
gent Automation, Inc. (IAI), Maryland.
Her primary research interests include
wireless ad hoc/sensor networks, and
wireless network security. Dr Deng
received her Ph.D. in Electrical Engi-
neering from University of Cincinnati
in 2004, majoring in communications
and computer networks. At Al she is currently leading
several network and security related projects, such as secure
routing in Airborne Networks, network service for Airborne
Networks, DoS mitigation, agent-based intrusion detection
system for MANET, acoustic sensor network for threat
detection, and multi-sensor fusion.

266 Wirel. Commun. Mob. Comput. 2011; 11:254-266 © 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/wecm

