
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2014; 7:2509–2526

Published online 27 December 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.407
SPECIAL ISSUE PAPER

Virtual flow-net for accountability and forensics of
computer and network systems
Daisuke Takahashi, Yang Xiao* and Ke Meng

Department of Computer Science, The University of Alabama, 101 Houser Hall, Box 870290, Tuscaloosa, AL 35487-0290, U.S.A.
ABSTRACT

Information/secret leaking cannot always be recorded in digital log files. In other words, in log files, not all information/
events are recorded, and it is thus impossible to trace the paths of secret leaking on the basis of log files alone. In this paper,
to resolve the difficulty of the lack of information, we utilize user–relationship graphs, or social networks, to compensate
for the required information. We also utilize a probabilistic analysis to build virtual links to follow information flows. User–
relationship graphs are constructed from several flow-net data structures over a longer period so that we can avoid missing
embedded threats such as hostile codes. We call this approach virtual flow-net. Copyright © 2011 John Wiley & Sons, Ltd.

KEYWORDS

social networks; user–relationship graph; flow-net; accountability; forensics

*Correspondence

Professor Yang Xiao, Department of Computer Science, The University of Alabama, 101 Houser Hall, Box 870290, Tuscaloosa, AL
35487-0290, U.S.A.
E-mail: yangxiao@ieee.org
1. INTRODUCTION

Computer forensics, or digital forensics, is an emerging
technique used for the methodical investigation of computers
and digital devices to solve criminal cases. In the 20th cen-
tury, the rise of personal computers and computer networks
made people’s lives convenient, but it also increased the
number of crimes involving them. Accordingly, some people
have intentionally misused computers to commit crimes or to
attack other computers [1]. Digital crimes include hostile
codes (e.g., computer viruses and worms), spam e-mails,
denial-of-service attacks, and so on. However, involving
computers in crimes often leaves electronic evidence in the
computers. In fact, even though criminals believe all relevant
information in the digital devices has been deleted or over-
written by other irrelevant data, actual traces remain in the
hard disk drives (e.g., in slack space). Sometimes, written
data cannot be deleted but instead are only marked as having
been deleted, and space is free to be reallocated [1]. Further-
more, by using sophisticated electron microscopes, even
overwritten tracks can be recovered in a bit-by-bit manner
[1]. Basically, computer forensic specialists reveal and show
the digital evidence in a court and then collect segments of
data, extracting the meanings of the data and user’s activities
that initially appeared to be meaningless at first glance.

From the traces left by criminals, detectives and computer
forensic specialists figure out critical evidence of the crimes.
Copyright © 2011 John Wiley & Sons, Ltd.
These investigations involve two kinds of methodologies:
hard disk drive and auditing log file investigations. In hard
disk drive investigations, the data examined by the digital
forensics specialists reveals data that include contents that
were hidden by the criminals. On the other hand, in auditing
log file investigations, the data examined may not contain the
contents but just discloses activities that were electronically
conducted by the criminals. Both investigations are very
important. However, in this paper, our primary concerns
mostly address the auditing log files; that is, we are only
concerned with users’ activities and determining the meaning
of the sequence of the activities indirectly. Indeed, only
retrieving the user’s malicious activities from the auditing
log files is very challenging, but the use of these techniques
is very practical in criminal investigations.

In our previous paper [2], we presented algorithms that use
auditing log files to trace the possible paths of secret leaking
with or without a bounded period to perform the following
tasks: (i) to find out a possible route/trace on which a secret
flows into a particular resource; (ii) to find out all the suspects
who possibly accessed, directly or indirectly, the secret in the
past or in the past time duration T; (iii) to find out all possible
routes/traces through which a secret flowed into a particular
resource, and so on.

However, information/secret leaking cannot always be
recorded in digital log files. Examples include the following:
(i) a user can come home and tell the secret to his wife who
2509

Virtual flow-net for accountability and forensics D. Takahashi, Y. Xiao and K. Meng
may eventually leak the secret to other places; (ii) the user
can use other means (such as telephone, fax, cellular phone,
etc.) than computers to leak the secret, which do not log the
actions or cannot be accessed or associated with. In other
words, in log files, not all information/events are recorded,
so it is impossible to trace the paths of secret leaking based
only on log files.

In this paper, to resolve the difficulty of the lack of infor-
mation described earlier, we utilize user–relationship graphs
(URGs), or social networks, to compensate for the required
information. We also utilize a probabilistic analysis to build
virtual links to follow information flows. URGs are
constructed from several flow-net data structures over a
longerperiod in order to avoid missing embedded threats
such as hostile codes. Of course, the length of the informa-
tion durability is another research issue, but in this paper,
we only use 1 year of information for the construction of
URGs. We call this approach virtual flow-net.

In this paper, we use information leakage as an example to
illustrate usage for forensics. However, virtual flow-net does
not limit itself in the usage of information leakage. The idea
could be used in many situations when some information is
missing. This idea potentially improves the effeteness of
forensics.

One major contribution of the paper is the adoption of
URG in flow-net or logs so that missing links can be built
virtually.

The rest of this paper is organized as follows: Section 2
introduces social networks and k-connect graphs; Section 3
reviews auditing log files and flow-net; Section 4 proposes
the virtual flow-net; Section 5 explains how to construct a
URG and an extended URG (EURG) and shows algorithms;
Section 6 provides some experiments; Section 7 presents
some problems and challenges in URG; finally, we conclude
the paper in Section 8.
2. SOCIAL NETWORK AND
K-CONNECTED GRAPH

Part of the process of constructing a URGutilizes the concept
of social networks and the k-connected graph. Actually, a
URG is a social network constructed from particular data sets
(e.g., server side’s e-mail log files, system log files, driver
license database, etc.). The concept of the k-connected graph,
or k-connectivity, is used to put weight on links among
people in the social network. By using these two concepts,
we construct virtual links compensating for missing links to
figure out virtual paths of secret leaking.

2.1. Social network

Broadly, a social network is an actual network of people all
over the world. It also examines the small-world phenomenon.
In general, the concept of a social network is used to figure out
short paths between two people in a network from only local
information [3]. For example, when people seek jobs, one
way to attain job interviews might be to follow human
2510 Secur
connections until they finally reach representatives of their
target jobs. This strategy might work better than more direct
ones. However, how do people determine short or efficient
connections to attain their target jobs? People usually only
have the information of their immediate contacts, and they
usually do not have global information for their social
networks. Thus, the question confronted within a social
network is how to determine short or efficient paths for people
to attain their target jobs in a social network from only their
immediate contacts in this job search example.

A social network consists of clusters of smaller subnets,
and usually, these clusters are hierarchically structured.
Individuals belong to one or more social subnets and have
relationships with others in their networks. Some individuals
sometimes do liaison work between or among subnets that
connect two or more unrelated social networks. The smallest
unit is the individual, and each may have one or more
immediate contacts, which construct the first levels of social
networks. Obviously, each participant in this first level has
their own social networks; therefore, including their contacts
makes the second-level social networks, that is to say,
contacts-of-contacts. These processes are recursively
conducted until the social networks finally cover all the
people on earth. Therefore, in approximation, if each individ-
ual has 1000 immediate contacts or acquaintances, 10003 or
one billion people are involved in an individual social
network before its third level (contacts-of-contacts-of-con-
tacts) and covers everyone in the USA [3]. That means that
only three consecutive links are required to get to anyone
in the USA. Of course, this result is subject to an assumption
of the networks being random; that is, no one belonging to a
network has the same person in their contacts. In other
words, there are no overlaps among acquaintances of two
people, but this is not true in reality. However, in fact, social
networks are constructed differently according to their origi-
nal resources. For example, social networks constructed by
e-mail contacts and online communities, such as Club Nexus
or Facebook, may have different sizes and structures. The
authors in [3] found out that there are some students partici-
pating in Club Nexus who do not have any links to other
students, and therefore, these people registered themselves
to the community but did not register friends’ links, called
‘buddies’, to it. On the other hand, these people may have
friends’ e-mail addresses in their address books in e-mail
client applications.

Accordingly, because social networks grow exponentially
according to the number of average immediate contacts,
targets are not relatively far from the original person but just
a few steps away from them [3]. In the previous example,
everyone in the USA is virtually covered by only three links.
This phenomenon is called the small-world phenomenon. To
reveal the small-world phenomenon, a number of experiments
and studies were conducted since the middle of the 1960s
[4–8]. For example, an experiment of e-mail contacts with
60000 participants conducted in 2002 demonstrated an aver-
age of 4.1 links chained people in continents end-to-end [9].

In searching for short paths between two people, two
organizations, or a person and organization from many
ity Comm. Networks 2014; 7:2509–2526 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Virtual flow-net for accountability and forensicsD. Takahashi, Y. Xiao and K. Meng
contacts, greedy algorithms are often used [3]. This is
because, in most of the cases, individuals only have knowl-
edge of local contacts, which may be, at most, knowledge
of contacts-of-contacts or even just contacts. However,
paper [3] experimentally proves that even this kind of
information is enough to connect originated people to
targets overseas by using greedy algorithms with auxiliary
information such as geographical or professional proxim-
ity. In other words, every time a person chooses one or
more contacts from their own contact list as a next step,
by choosing ones who have geographical or professional
proximity, the targets are successfully reached in very
few steps.

Another assumption of the small-world phenomenon is
that all networks are subnets of one or more larger networks,
which means that a social network is hierarchically struc-
tured or tree shaped, as shown in Figure 1 [10]. For example,
we can say that a student belongs to a research laboratory
within the Department of Computer Science, which belongs
to either the College of Engineering or Arts and Sciences,
which belongs to some University, and so on. We can also
say that this student may be an undergraduate student who
belongs to some local society or community. In this hierar-
chically structured social network, we can assume that two
individuals belonging to the same group or organization have
more probability of knowing each other than ones belonging
to different groups or organizations, and perhaps, connec-
tions are stronger, or more intimate, than ones in different
groups [3]. Paper [3] raises a probabilistic analysis of the
strength of these connections such that the probability that
two individuals know each other can be written as e�ah,
where h is the height of the tree at their lowest common
branch and a is the decay parameter. Typically, paper [3]
Figure 1. An example of a social network constructed according
to e-mail communications.

Security Comm. Networks 2014; 7:2509–2526 © 2011 John Wiley & Sons, Ltd
DOI: 10.1002/sec
weighs the closeness of two people by�a so that two people
in the closer two groups are more likely to know each other,
as we described previously.

It was proven by Kleinberg [11,12] that by using the geo-
graphical closeness to targets in each hop (each contact), the
lengths of contact chains can be bounded by (lnN)2 by using
a simple greedy strategy, where N is the number of people in
a social network. In other words, whenever people select
contacts from their lists, choosing a next contact that is
geographically closer to the targets’ location causes the
length of the contact chains to be bounded by (lnN)2. How-
ever, to achieve this upper bound of (lnN)2, Kleinberg
[11,12] also made the assumption that the probability that
two individuals known each other must be the inverse of
the square of the distance; that is to say, when the distance
of two individuals is d, the probability that they both know
each other can be represented as c/d2, where c is some
constant. Otherwise, it is impossible for a person to greedily
find out paths to the targets in polylogarithmic time [11,12].

2.2. E-mail network

Previously, HP Labs [3] constructed social networks from
their e-mail logs. The construction of a social network
follows the following rules: (i) two individuals are connected
if they have exchanged e-mails at least six times both ways
within 3months; (ii) someonemulticasting an e-mail to more
than 10 people at the same time must be ignored.

A threshold of six e-mails may seem too weak to connect
two individuals, but it is proven by Granovetter [13] that
weak links can be used for job searching and information
spreading.

As a result, an HP Labs experiment created a social
network of 430 individuals, where the median number of
acquaintances is 10 and their mean value of them is 12.9 [3].
From this social network, HP Labs investigate greedy searches
according to three different properties: best connected, closest
to the target in the organization, and closest physical proximity
to the target. In the first strategy (i.e., best connected), contacts
having the most acquaintances are chosen as the next hops.
This strategy is best suited for power-law degree distributions,
but in the filtered HP Labs e-mail network, distribution had an
exponential tail rather than a power-law distribution.
Accordingly, generated results had a median number of 16
and amean value of 43 steps [3]. On the other hand, the second
and third strategies yielded better results. In the second
strategy, next contacts were chosen on the basis of their close-
ness to the targets in a hierarchically structured social network,
generating a median of 4 and mean of 5 [3]. In the third
strategy, as in the second one, contacts were chosen on the
basis of their closeness to the targets, but with geographical
rather than organizational hierarchy, yielding a median of 6
and a mean of 12 steps [3].

2.3. k-Connected graph

Basically, if there are paths that link any pair of vertices in
graph G, G is considered to be connected. Otherwise, it is
2511.

Virtual flow-net for accountability and forensics D. Takahashi, Y. Xiao and K. Meng
disconnected if there is no way to get to one or more vertices
from the other vertices in G. For example, the left side graph
in Figure 2 is disconnected because it is obvious that there is
a vertex that cannot be reached from the other five vertices,
whereas the right side graph is connected because there is a
path that links each pair of vertices.

Thus, k-connected graphs have k distinct (independent)
paths for every pair of vertices in graph G. In other words,
it is required that at least k vertices must be removed from
the graph in order to disconnect it. In other words, removal
of any k� 1 vertices does not affect the connectivity of the
graph.

It is very important to figure out the number of connectivity
of a graph because knowing the connectivity of the graph
allows the robustness of network communication links to be
interpreted. For example, when we represent a computer
network as a connected graph and the graph is a minimum
spanning tree, this computer network is very vulnerable to
communication failure because the removal of only one edge
disconnects one or more vertices from the graph (one or more
host machines from the computer network). To avoid this
vulnerability, a computer network should have one or more
redundant links for every pair of host machines, routers, or
switching devices. Thus, when a computer network is
expressed as a graph and we know that the graph is
k-connected, the computer network can be considered to be
very robust because any k� 1 link failures do not cause total
failure of the computer network. One problem of the
k-connected graph is that whether or not a graph is k-connected
cannot be computed by any algorithms in polynomial time. In
other words, figuring out whether a graph is k-connected or not
is known as a non-deterministic polynomial-time hard
problem [14]. Fortunately, several approximation algorithms
for the k-connected graph problem have been developed and
turned out to have the polynomial time complexity [14]. For
example, for the unweighted k-edge-connectivity problem,
an approximation algorithm with a performance ratio of
1.85 has been developed [14].

We can apply this notation of k-connected graphs to
express the strength of the network, which is the prob-
ability that two individuals in a social network know
each other.
Figure 2. Two graph examples.

2512 Secur
2.4. Related work

Related work in accountability includes those in [1,15–31].
Other related work can be found in [32–81].
3. AUDITING LOG FILES AND
FLOW-NET

3.1. Auditing log files

Typically, auditing log files aim to record every activity of
users involved in computer systems or networks. These
data are usually ordered in a time-sequential manner and
preserved on hard disk drives. Later, they are retrieved
by investigators, such as detectives or system and network
administrators, so as to produce scientific evidence of
crimes. This is done because, in quite a few cases, elec-
tronic documentary evidence is eliminated from electronic
storage, such as hard disk drives, by clever offenders
(although it is almost impossible to eliminate digital evi-
dence completely and they are typically left in slack
space). From the log files, even though electronic docu-
ments have already been eliminated, detectives or system
and network administrators may find clues or doubtful
activities through which they can identify and finally relate
the criminals to the cases.

In general, many resources apart from operating systems
have their own log files. For example, e-mail client applica-
tions obviously have their own log files, which record logs
of sent and received messages, which determine who sent an
e-mail to whom and when? Additionally, printers in a LAN
should have logs of whomade use of them and when? In other
words, they observe all accesses from local hosts and keep
them in their own log files. Along with these application log
files, the network traffic or packets in networks can also be
captured and logged into files in particular formats. For
example, tools used for this purpose are ethereal, wireshark,
tcpdump, and so on.

In our previous papers [2,82], we assumed that log files
can keep all the users’ activities in terms of user or process
names, actions, resources, and possibly locations with time-
stamps. In short, they keep things such as who does what
to whom and when. Basically, user or process names
represent instances, which initiate events. They usually
include user and process IDs and IP addresses. Actions keep
users’ behaviors, such as reading or writing in database
systems or sending e-mails in network systems. Resources
are objects through which actions are carried out by users,
and they include files, directories, servers, and so on.

In this paper, we consider two kinds of log files with
respect to whether users interact with other users, file
systems, or resources. The former case comprises e-mail
log files in e-mail servers of Web-based e-mail applications.
In general, e-mail servers keep logs of exchanged e-mails,
such as the sender’s user accounts, the recipient’s e-mail
addresses, the subject, and the time, which look like as
follows:
ity Comm. Networks 2014; 7:2509–2526 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Virtual flow-net for accountability and forensicsD. Takahashi, Y. Xiao and K. Meng
Outbox for user D:

• User A, Hello, Feb 4, 2008
• User B, Re: Hi, Feb 4, 2008
•
• user-c@example.com, Fw: Pictures, Feb 3, 2008
•

We assume that this kind of log file only records the users’
activities but not the exact contents of logs. In the aforemen-
tioned example, a log file keeps the fact that user D sent an
e-mail to user B on 4 February 2008, but it does not keep
the contents of the e-mail. On the other hand, investigators,
such as detectives or system and network administrators, can
prove relations between users A andD from the e-mail log file.
Although this information may be trivial in this instance, it
may convey useful information for later investigation. There-
fore, these log events will typically be used to prove relations
between two people. Moreover, we cannot apply a transit
trusted model to create URGs, or social networks, because
we cannot always say that two people have a connection even
when these two people sent e-mails to the same third person.

In the latter case, log files should log information as follows.

• User A wrote file X at 10:05 AM, 4 February 2008 (1);
• User A accessed server Y at 10:10 AM, 4 February
2008;

• . . .;
• User B read file X at 04:30 PM, 4 February 2008 (2);
• User B deleted file X at 04:32 PM, 4 February 2008;
•

Note that the logging in this system is just for an example to
illustrate our idea. Logging in other systems also has similar
features.

This type of log records is called system logs and is mainly
used to disclose data or file manipulation or elimination and
for rollback and roll forward transactions recovered from acci-
dental crashes in the database systems. From this log informa-
tion, if investigators become suspicious of user B’s behavior,
they may, if possible, recover the data in file X and determine
its contents. Thus, from these log data, it is shown that there
was a file X, which was deleted by user B, and it may be
worthwhile to investigate this file formore clues. Log files also
reveal other information, such as indirect relations between
two people. Indirect relations are two people’s relations that
are not explicitly represented in data but are semantically
induced from their contents. For example, from the aforemen-
tioned logged data, user Amade somemodification to the data
in file X at 10:05AM (1), and at 04:30pm on the same day,
user B may have seen this modification by reading (2). In this
case, we may be able to create some weak relations between
users A and B. Thus, as in the previous case, it may convey
useful information for the later investigation.

3.2. Problems in log files

One problem of these log file systems is that they are not
organized well, which results in confusing investigators.
Security Comm. Networks 2014; 7:2509–2526 © 2011 John Wiley & Sons, Ltd
DOI: 10.1002/sec
Because, in most of the cases, auditing log files are
ordered in a time-sequential manner, two consecutive logs
or actions are likely to be irrelevant or not related to each
other. This can be especially true for the network auditing
log files. Moreover, in the network auditing log files, which
are captured by the aforementioned network monitoring
tools, even one action produces many packets. For example,
when a user attempts to send 10MB of attached data via
e-mail or FTP (e.g., pictures), these data are usually divided
into a number of smaller chunks and separately sent to one
or more recipients. Consequently, these chunks are assem-
bled by the recipient side of an e-mail client application. In
this situation, network monitoring tools capture the same
number of packets sent by the sender representing the same
actions for a number of times, but these actions may not be
sequentially logged by the tools and thus may confuse
investigators.

Another problem of auditing log files is that different
log files are saved in separate files so that the relationship
among events in different log files is missing.

3.3. Flow-net

In previous papers [15,16,83,84], in order to mitigate their mess
and make log files more manageable, we designed another type
of data structure, calledflow-net, whichwas especially suited for
retrieving the activities of particular individuals.

Figure 3 shows an abstract image of flow-net, in which
there are four users and four resources in connection, which in-
teract with each other. For example, from the figure, we can
know that user 1 accessed resource A at 10:00AM and
resource D at 2:00 PM. We can also know that user 2 accessed
resource B at 12:00 PM. On the other hand, resource A is
accessed by user 1 at 10:00AM and by user 4 at 11:00AM.
However, actual flow-nets can be more complicated. Figure 3
shows that a flow-net is a two-dimensional linked list with two
aspects: users and resources. However, flow-net can have three
dimensions, as indicated in our previous papers [15,83,84].

In flow-net, every user’s activity is organized both user-
by-user and resource-by-resource by creating a number of
linked lists, each of which corresponds to an individual and
where the same resources are connected to each other in a
time-sequential manner. In other words, we create linked lists
according to all entities in the system, such as user names,
user IDs, process IDs, and so on, so that each user has his
or her own linked list (a sequence of activities). After
constructing all the users’ activity linked lists, the same
resources of the linked lists are connected in the same way
to create another kind of linked list, but at this time, activities
are linked in terms of having the same resources. Therefore, a
user activity or event, or a node of linked lists, has two
incoming edges and two outgoing edges. In other words,
one outgoing edge points to the same user’s next activity
and the other points to the same resource’s next activity.

One advantage of flow-nets is that less time is required to
search one user’s activities. Because log files of multiple users’
activities can be seen as sequences of each individual’s activi-
ties, if it is required to look for some part of only a few users’
2513.

User 1

User 4

User 3

User 2

Resource A Resource DResource CResource B

11am

12pm

12pm

2pm10am

10am

1pm

Time

Time

Figure 3. A simple image of flow-net. Human shaped figures on the Y-axis represent user accounts or processes in a network (audit-
ing log file), and block shaped figures on the X-axis represent resources that any user can access. Also, circled intersections with times
of each axis represent activities that users conduct processes. For example, user 1 accessed resource A at 10:00 AM, accessed re-

source D at 2:00 PM, and so on.

Virtual flow-net for accountability and forensics D. Takahashi, Y. Xiao and K. Meng
activities, they require less searching time than tracing all the log
files from top to bottom. Another advantage of flow-nets is in
network auditing log files; because individuals’ activities are or-
ganized with respect to each user, one user’s successive activi-
ties are captured more easily than the original log files. In
other words, in general, one user’s consecutive actions or pack-
ets are comprised of some relational activities, such as 10MBof
pictures being sent in a number of smaller chunks of data, so that
we can automatically ormanually assemble these chunks of data
to construct other relational information, which creates linked
lists comparatively easily.

Afinal advantage offlow-net is that it records the relationships
of events.

Our previous works [15,16,83,84] studied flow-net. How-
ever, this paper is different from our previousworks by studying
virtual flow-net using URG.
4. VIRTUAL FLOW-NET

4.1. Multi-level access control and
covert channels

With respect to database security, multi-level access control or
role-based access control is typically employed in order to
2514 Secur
preserve data confidentiality. In other words, each user must
belong to one of the groups having their own access privileges,
on the basis of which they can access various resources. For
example, each datum may be classified into four privileges:
top secret, secret, classified, and unclassified. According to the
security classifications, the Bell–LaPadulla properties [85]
restrict data access for the sake of preserving data confidentiality
(i.e., no-read-up and no-write-down). With the no-read-up
property, lower-level users must not access (read) any datum
with higher privileges; with the no-write-down property, users
with higher privileges must not write any datum to lower
resources because this datum can be consequently read by
lower-level users. However, paper [85] suggests that this may
not be sufficient to prevent covert channels.

On covert channels, data with higher access permission
may be indirectly passed to lower-level resources (files).
Accordingly, users with lower-level privileges can access
data with higher access permissions flowed via the covert
channels. However, covert channels indeed violate confiden-
tiality of data-based systems, even those with multi-level or
role-based access control property. Furthermore, these covert
channels can occur intentionally or unintentionally.

In papers [2,82], we presented the use of auditing log
files to figure out possible paths (covert channels) of data
flow from higher to lower levels when such paths occur.
ity Comm. Networks 2014; 7:2509–2526 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Virtual flow-net for accountability and forensicsD. Takahashi, Y. Xiao and K. Meng
We discovered that auditing log files could be represented
by a specific graph notation, which is more like a binary
tree. We designed algorithms on the basis of the depth-first
search of the graph theory to reveal the covert channels and
user accounts concerned with data leakages [2,82]. Our
simulation results showed that the algorithms only need
to address linear time complexities to figure out all possible
user accounts that are likely to be on the covert channels.

4.2. Virtual flow-nets

However, information/secret leaking cannot always be
recorded in digital log files. Examples include the following:
(i) a user can come home and tell the secret to his wife, who
may eventually leak the secret to other places; (ii) the user
can use other means (such as telephone, fax, cellular phone,
etc.) than computers to leak the secret, which do not log the
actions or cannot be accessed or associated with. In other
words, in log files, not all information/events are recorded,
so it is impossible to trace the paths of secret leaking on the
basis of log files alone.

Our supposition is that, even though we know that there
must be data leakage via one or more covert channels to
lower-privileged users, we cannot determine the paths from
an existing log file or flow-net information. In other words,
even though we know that some users with lower access
permissions could obtain data from higher-level resources,
our designed algorithms could not figure out any link
between a log datum where a secret was first accessed and
one at which the secret was first read by a lower-level user,
or returned false eventually. In that case, it is supposed that
the auditing log database manager may have missed record-
ing one or more auditing data, secrets were in-electronically
passed to some person intentionally, or some logs were inten-
tionally manipulated. However, the lack of data may
compromise further investigations of this kind. Thus, we
require auxiliary information or social relations of all the
users registered in the database system to compensate for
the lack of information. We create a graph data structure
representing individual user relations to others, called a
URG, from the past log files or flow-nets.

Thus, further investigation follows the steps below:

(1) Create aURG frompast logs of applications (e.g., e-mail
client application).

(2) Create an EURG from past system log files or flow-nets.
(3) Compute weight/probability of links of EURG.
(4) Add the EURG to current flow-nets (called virtual

flow-nets) for investigation.
(5) Examine the virtual flow-nets utilizing virtual links

with the highest to the lowest probability until
useful information is extracted.

In step 1, from information of the flow-net of an e-mail
log file of the past 1 year (this period can be determined by
the experienced investigators), users are directly connected
to form a URG, or a social network. For example, if user A
sent e-mails to user B within the past year, these two people
Security Comm. Networks 2014; 7:2509–2526 © 2011 John Wiley & Sons, Ltd
DOI: 10.1002/sec
are connected in a URG. Thus, constructing a URG is not
that difficult. To the constructed URG, in step 2, we need
to add extra information (connections) from the system log
files or flow-nets. As mentioned before, system log files or
flow-nets may not show direct personal connections between
two people, but only the activities of each person. However,
as we dealt with information flows in papers [15,83,84], we
can make connections among people by using the resources
or files in a system. For example, when users A and B share
some file X in some organization system, these two users can
be connected via this intermediate file, even though they
have not disclosed any direct contacts in the past. From this
kind of information, we can create another kind of URG,
the EURG.

The EURG is very useful. For example, in a short period,
detectives and digital forensic analysts may miss the connec-
tions among particular people, even though they made actual
contact before and after this period. In general, a short period
does not seem long enough to contain the complete relations
among people in a social network because of the shortness
of time. On the other hand, involving very old information in
a URG may result in more positive false results and, accord-
ingly, impede the investigations because involvingmore infor-
mation requires more searches with increased complexity.
Therefore, one of the issues must be what length of time we
need to use to construct a complete or approximately complete
social network among people in the organization, and there is
obviously a trade-off between the length of log files or flow-
nets and the accuracy of the URG. The period that digital
forensic analysts need to construct a URG depends on the
experience of the analysts and is out of scope of this paper.

After the construction of the EURG, we next need to
weigh each link or connection between two people according
to the strength of the probability that the two people know
each other. This strength is determined in relation to the
number of e-mails exchanged between two people. In other
words, the more e-mails that are exchanged between two
people, the stronger we consider their connection.
5. USER–RELATIONSHIP GRAPH

When creating a URG, we take two steps to create two dif-
ferent graphs: a URG and an EURG. The objective of the
first step is to construct a user–relationship graph, and the
second step constructs an extended user–relationship graph.
A main difference between the two graphs is that the first
graph concerns direct connections among people in a
network, whereas the second graph concerns indirect
connections among people. For example, direct connections
among people include a parents–children connection, an
e-mail connection, a social network connection, and so on.
Furthermore, when we say direct connections in a social net-
work, such as Club Nexus or Facebook, we mean links
posted on an individual introduction’s page that leads you
to their intimate friends’ introduction pages. Thus, connec-
tions of these links construct a social network, as mentioned
in the previous section, and we call this network a URG.
2515.

Virtual flow-net for accountability and forensics D. Takahashi, Y. Xiao and K. Meng
The EURG adds another aspect to the original URG. An
EURG extends their relations to indirect relations. In the
indirect relationship, connected people may never have
met in person, but are connected through some resources.
For example, database logs keep the activities of log-in
users toward data in the system. They keep the information
that one user interacted with one file at some point, and af-
ter that another user interacted with the same file at another
point. In the case of the EURG, these two users are capable
of being connected to each other even though they belong
to different departments in an organization and have not
actually met each other. This is because, from our perspec-
tive, they had an interaction through the file and it is possi-
ble that the latter user saw data that had been written by the
former user. We call this an indirect connection.

5.1. Creating user–relationship graph from a
flow-net

In the previous subsection, we showed what log files look
like and how they work in computer forensics. In this sub-
section, we show how to create URGs from these log files.
As previously mentioned, creating URGs takes two steps,
and these steps create two kinds of related graphs: URGs
and EURGs. Now we go into detail about these two steps.

5.1.1. Step 1: creating a user–relationship graph.
Figures 4 and 5 show flow-net representations of the e-mail

and system log files’ examples.
Not only e-mail server log files but also flow-net formats

contain minimally required information, such as, where
e-mails come from and are sent to, their subjects, and the date
User A

User B

User C User D

Feb 2
2008

Feb 2
2008

Feb 4
2008

Feb 4
2008

A

B

C

D

Figure 4. Examples of an original e-mail log file in an e-mail
server and the resulting flow-net representation.

2516 Secur
they were sent. Following the linked list for user A in Figure 4,
we know user A sent an e-mail to user C on 2 February 2008
and to user B on 4 February 2008. Thus, in creating a URG
(social network diagram), users A and B are bi-directionally
connected, as shown in Figure 6. Likewise, by following user
B’s linked list, we see that user B sent an e-mail to user D on 2
February 2008 and then to user C on 4 February 2008, and
after that he or she received another e-mail from user A. These
three users are definitely connected in a URG, as shown in
Figure 6. Basically, a URG is merely a social network used
to complete a short period flow-net. On the other hand, URGs
are constructed from e-mail or system logs over long periods
that we are not concerned with. However, this weak informa-
tion can be occasionally useful when information from the
previous flow-nets is not sufficient. To avoid confusion, as
another example, in papers [2,82], we considered covert
channels of secured data in the multiuser database. However,
there may be cases in which algorithms cannot generate any
results, that is, any paths from one event to the target event,
but we know that secrets were definitely known by users with
lower priorities. In that case, we utilize URGs as auxiliary
information to compensate for the lack of evidence.

Algorithm 1. Suppose that we have a flow-net data struc-
ture having information of sending-events in an e-mail server,
as shown in Figure 4. Assume that we haveN users. This algo-
rithm is summarized as follows: We prepared a two-dimen-
sional array for creating a graph data structure, where one
dimension is used for senders and the other is used for recipi-
ents. In the case of N users, we prepare an N�N two-dimen-
sional array. Each cell comprises a user ID and an integer
value, which represents how many times users of the intersec-
tion interacted with each other (e.g., via e-mails, etc.).

(1) For an N�N two-dimensional array, initialize every
column with a user ID or e-mail address, and set the
counter value to 0.

(2) For each user entity (linked list), investigate events
from the first to the last. When this user sent an e-mail
to other users in the event, increment the counter of the
corresponding user by 1. Repeat the same operation
toward events that happened within a 1-year period,
count them, and put the number of the e-mails on both
intersection cells of a URG.

Here are some functions used in the pseudo code for the
construction of a URG:

• size[email_f low-net] returns the number of entities or
users in e-mail_flow-net.

• email_f low-net[i] returns an entity at position i of
e-mail_flow-net (i.e., the linked list of user i’s events).

• email_f low-net[i].begin points to the first event of
user i’s linked list.

• email_f low-net[i].next points to the next (newer)
event in user i’s linked list.

Pseudo Code: URG is a graph abstract data structure
represented as a two-dimensional array comprising size
ity Comm. Networks 2014; 7:2509–2526 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

User D

User E

File X
Server Y

Accessed
10:06am

Created
10:08am

Wrote
10:09am

Wrote
10:18am

Read
10:15am

D

E

Y X

Figure 5. Examples of an original system log file and the resulting flow-net representation.

Virtual flow-net for accountability and forensicsD. Takahashi, Y. Xiao and K. Meng
[email_f low-net] nodes, but initially, no connections are
made among the nodes (i.e., every cell of the two-dimensional
array is initialized with 0). Table I shows the log entries of the
e-mails.
event_ptr is a pointer of an event.
email_flow-net web-based e-mail logs
for i=1 to size[email_flow-net]
do event_ptr email_flow-net[i].begin
while event_ptr 6¼null
do j event_prt!recipient
URG[i, j]=URG[i, j]+1
event_ptr email_flow-net[i].next

Because the relationships constructed from e-mail logs
are direct—that is, usually, e-mails are directly exchanged
with each other, person-by-person—we call this URG a
direct URG.
A

D

C

B

E

Figure 6. A user–relationship graph derived from Figure 4. From
Figure 4, because user A sent e-mails to both users B and C, we
suppose that they have a relationship with each other and con-
nect them with bi-directional arrow edges. Also, user B sent
both users C and D e-mails, so we connected them to represent
relations. On the other hand, no one is connected to user E be-

cause user E did not interact with anyone before.

Security Comm. Networks 2014; 7:2509–2526 © 2011 John Wiley & Sons, Ltd
DOI: 10.1002/sec
5.1.2. Step 2: creating an extended
user–relationship graph.

Likewise, we can construct another URG from system log
files. From the flow-net representation of a system log file in
Figure 5, as we follow the links of user D’s linked list, we
encounter three events where user D accessed server Y and
created and wrote data on file X. Therefore, when we are
confronted with an event where user D accessed server Y
at 10:06AM, we next trace the links of server Y’s linked list
to check whether other users accessed server Y within a
predefined period, and if someone did, user D is connected
to those users through server Y. For example, in Figure 5,
user D created file X at 10:08AM, and following the links
of file X’s linked list consequently reaches an event where
user E read the contents of file X at 10:15AM. Hence, we
connected users D and E in another URG (social network),
as shown in Figure 7. Table II shows the related events.

Algorithm 2. Suppose that we have a flow-net data
structure having the information of only indirect relations as
shown earlier. Assume that we haveN users andM resources.
Assume that we are only concerned with the first indirect
users. We prepare a two-dimensional array for creating a
graph data structure, where one dimension is used for senders
and the other is used for recipients. In the case of N users, we
prepare an N�N two-dimensional array. Each cell has an in-
teger value, which represents howmany times users of the in-
tersection interacted with each other (e.g., via e-mails, etc.).
Table I. Log entries of e-mails.

From To Subject Date

User B User D This Weekend 2 February 2008
User A User C RE: Hi 4 February 2008
User B User C FW: Pictures 4 February 2008
User A User B Hello 4 February 2008

2517.

Table II. Table of events.

Subject Action Object Date

User D Accessed Server Y 10:06 AM

User D Created File X 10:08 AM

User D Wrote File X 10:09 AM

User E Read File X 10:15 AM

User E Wrote File X 10:18 AM

Virtual flow-net for accountability and forensics D. Takahashi, Y. Xiao and K. Meng
(1) Investigate what resources user A accessed within a
1-year period. For example, we may know from a
flow-net that user A accessed resources having all
the odd numbers (i.e., 1, 3, 5, 7, 9).

(2) For each resource, investigate which users accessed
the resource by tracing its resource linked list, count
how many times that they accessed it, and put the
number of accesses on a URG. For example, from
step 1 of this example, we know user A accessed
resource 1 within this period, so we next investigate
which user accessed resource 1 within this period.
Keep investigating the resource linked list until its
events are finally exhausted.

(3) Do the same investigation as step 2 for other
resources except for resources that have already
been investigated.

(4) Do the same investigation for the other users.

Here are some functions used in the pseudocode for the
construction of an EURG:

• size[system_flow-net] returns the number of entities
or users in system_flow-net.

• system_flow-net[i] returns an entity at position i of
system_flow-net, that is, the linked list of user i’s
events.

• system_flow-net[i].begin points to the first event of
user i’s linked list.

• event.next_subject moves events in a user’s linked
list one event next (newer) from the current event
and returns the pointer to a new event.

• event.next_object moves events in a resource’s
linked list one event next (newer) from the current
event and returns the pointer to a new event.
A

D

C

B

E

X

Figure 7. Extended user–relationship graph derived from Fig-
ures 4 and 6. From Figure 4, we know that user E read some
data of file X, which user D created and may have put some in-
formation in. Therefore, we suppose that there is some sort of
relation between users D and E represented directional edges
interleaved by another object, file X, which is enclosed by a yel-

low square.

2518 Secur
Pseudo Code: URG is a graph abstract data structure
represented as a two-dimensional array comprising size
[system_flow-net] nodes, but initially, no connections are
made among the nodes, that is, every cell of the two-
dimensional array is initialized with 0.
event_ptr is a pointer of an event.
system_flow-net Web-based e-mail logs
for i=1 to size[system_flow-net]
do event_ptr1 system_flow-net[i].begin
while event_ptr1 6¼null
do event_ptr2 event_ptr1!next_object
while event_ptr2 6¼null
do URG.add(event_ptr2!subject)
event_ptr2 event_ptr2!next_object
event_ptr1!next_subject
5.2. Putting weight/probability on
user–relationship graph

The weight is the number of messages communicated
between two users within a period (e.g., 1 year), normalized
by the total number of messages among all users. For
example, user A interacted with user B via 100 sending and
receiving e-mails, and a total of 10 000 e-mails were trans-
mitted among all users in the organization (e.g., user A
through user Z) within the last year. In this case, we calculate
the weight or transition probability of the link between users
A and B as 100/10 000= 0.1.

Here is another very simple example. Table III shows
e-mail transactions among five people over a very short period.
From this e-mail log file in an e-mail server, we can
Table III. E-mail log file in an e-mail server, where 10 e-mails
were exchanged among five people for 5 days.

No. From To Subject Date

1 User A User C Hello 1 February 2008
2 User B User D Pictures 1 February 2008
3 User C User A RE: Hello 1 February 2008
4 User D User E FW: Pictures 1 February 2008
5 User B User A Question? 2 February 2008
6 User E User D RE: FW: Pictures 2 February 2008
7 User A User B RE: Question? 3 February 2008
8 User A User C RE: RE: Hello 4 February 2008
9 User D User E Last Weekend 4 February 2008
10 User E User D This Weekend 5 February 2008

ity Comm. Networks 2014; 7:2509–2526 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

A C
3/10

Virtual flow-net for accountability and forensicsD. Takahashi, Y. Xiao and K. Meng
systematically construct a flow-net and a URG, which are
shown in Figures 8 and 9, respectively.
B D E

2/10

1/10 4/10

Figure 9. User–relationship graph with weights between two
people. The numbers in the left side of a slash represent how
many e-mails are exchanged between two people, and the ones
in the right side represent the total e-mails exchanged in this e-

mail server.
6. EXPERIMENTS WITH USER–
RELATIONSHIP GRAPHS

We have implemented a URG. We developed a Java
graphic user interface based on JGraph [86]. The logs in
the e-mail servers were used to create the URG, which
shows the direct relationships between people.

6.1. Implementation

The URG concerns direct connections between people in a
network. The e-mail server logs are chosen as an example
through which to construct the URG because the e-mails
show the direct relations between two people or among
several people. We analyze the logs from the e-mail server
and generate the URG in this section.

A database is used in this implementation in order to
handle more data. We select the free version of MYSQL
[87] as the relational database management system.
Currently, there are three tables designed for the program:
user, mail_record, and file_access_log. The ‘user’ table
contains the basic user information such as user ID, user
name, and so on. The ‘mail_record’ table includes the logs
on the mail server, and the ‘file_access_log’ includes the file
access information on the file server. The data comprised by
the ‘mail_record’ and ‘file_access_log’ tables are acquired
by analyzing the logs on the mail and file servers. We will
skip the analysis of the logs and use the abstract data to create
the tables.

The program is designed with Java [88] based on Swing
and JGraph. The program may need the MYSQL-java
connector [89] to connect to the MYSQL database server.
The interface is shown in Figure 10.

The ‘Show mail record’ button will show the table of
‘mail_record’ in the data base, including the record ID,
sender, recipient, and send time. The ‘Show relation’ button
User B

User C User D User

User A

Feb 1,
2008
(1)

Feb 1,
2008
(2)

Feb 1,
2008
(3)

Feb 1
2008
(4)

Feb 1,
2008
(5)

Figure 8. Flow-net representation o

Security Comm. Networks 2014; 7:2509–2526 © 2011 John Wiley & Sons, Ltd
DOI: 10.1002/sec
will display the relationships among the people in the record
as in Figure 11.

As shown in Figure 11, User ‘a’ had sent e-mails to user
‘b’ and user ‘c’. User ‘b’ had sent mail to user ‘c’ and user
‘d’. However, there are no e-mails between user ‘e’ and
other users.

This implementation may support large amounts of data.
Because of the screen limitation, we only show five users
and six mail logs in Figure 11. Still, we can select a fixed per-
son and show all relations from other people to the person.

6.2. Evaluation

We calculate the probability of finding the information
leakage when using the URG as the supplement to the
flow-net. At the same time, we show the advantages of
the URG.

Two matrices will be created to store the data. Either the
URG or the EURG will generate an N�N two-dimensional
array, with N being the number of users. The N�N two-
dimensional array actually consists of an adjacency matrix,
and we will use this idea of an adjacency matrix.

6.2.1. Adjacency matrix.
The adjacency matrix is similar to the URG. In a graph of

G= (V, E), V is the set of all vertices, and E is the set of all
 E

, Feb 1,
2008
(6)

Feb 1,
2008
(7)

Feb 1,
2008
(8)

Feb 1,
2008
(9)

Feb 1,
2008
(10)

A

B C

D

E

f an auditing log file of Table III.

2519.

Figure 10. User interface.

Figure 11. User relation graph.

Virtual flow-net for accountability and forensics D. Takahashi, Y. Xiao and K. Meng
edges existing in the graph. The users in the URG are
represented by the vertices in the graph, and the relations
between the users are represented by the edges in the graph.
While in the adjacency matrix, the n users formed the n rows
and n columns matrix, and each cell value in the matrix
showed the direct relationship among the users. A value of 1
shows a direct relation between two users, and a value of 0
shows that there is no direct relation between the two users.
Figure 12 is an example of the transformation from the URG
to the adjacency matrix.

We call the adjacency matrix A. Assume that the variables
in the X-axis and the Y-axis are i and j, respectively. Then, the
value of A[i, j] is set to 1 when user i has a direct relation to
user j. Otherwise, the value of A[i, j] is set to 0. We assume
that each user is connected to himself and the value of
A[i, i] in the adjacency matrix is set to 1.
2520 Secur
According to the characteristics of adjacency matrix A, we
use the power n of matrix A to describe the indirect
relationships among the users. The indirect relationship means
that the related users have relations with each other through
one or more other users. The element Anij in the matrix An

showswhether there are paths from vertex i to vertex j inmatrix
A within n� 1 steps. As a result, we can use this method to
track the information leakage. Assume that there are m users
in the relation graph. If one user cannot reach another user inm
1 steps, then the two users have no relation. This means that if
Aij

m in thematrixAm is 0, then user i and user j have no relation.

6.2.2. The probability of tracking the
information leakage.

First, an N�N matrix A was defined to store the rela-
tions among the N users. Then, M direct relations were
ity Comm. Networks 2014; 7:2509–2526 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

A

E

DC

B

1 001 1

1 001 1

1 011 1

0 110 1

0 110 0

Figure 12. Transformation from the user–relationship graph to the adjacency matrix.

Virtual flow-net for accountability and forensicsD. Takahashi, Y. Xiao and K. Meng
put into the matrix randomly. Next, we calculate the value
of AN to show the relations between each pair of users.
Figure 13 shows an example of the matrices A and AN

where N= 10 and M= 10.
In the end, the probability of whether two users are related

can be calculated. Figure 14 shows the relation between the
number of relations put into the matrix and the probability
of whether the two randomly selected users are related.

In Figure 14, we evaluate the probability of tracking the
information leakage by randomly putting 1 to 30 relations
to 30 and 50 users, separately. For each probability, we
calculate 50 times and use the average value. The red line
includes 30 users and the blue line includes 50 users. From
Figure 14, we can see that the probability of tracking the
information leakage will increase when we put more
relations in the user relation matrix.
Figure 13. An examp

Security Comm. Networks 2014; 7:2509–2526 © 2011 John Wiley & Sons, Ltd
DOI: 10.1002/sec
6.2.3. Effects of adding an extended
user–relationship graph.

This section will show that the EURG may enhance the
probability of tracking the information leakage. In the evalu-
ation, we use 50 users to construct the matrix. There are 30
relationships randomly put into the 50 users. At first, we do
not use the EURG, and the result is the red line in Figure 15.

The red line shows that the probability of tracking the in-
formation leakage will keep the same value (about 0.16).
Then we randomly put 1 to 20 relationships in the EURG
for the 50 users and add the EURG to the existing matrix.
The result in blue line shows that the probability of tracking
the information leakage increases from 0.16 to 0.64 with the
increase of the relationship number from 1 to 20. Figure 14
shows that using an EURG may increase the probability of
tracking the information leakage.
le of the matrix.

2521.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Number of users=30
Number of users=50

Number of relations

Pr
ob

ab
ili

ty

Probability - Number of relations

Figure 14. Probability versus the number of relations.

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Do not use extended graph
Use extended graph

Number of extended relations

Probability - Number of extended relations

Pr
ob

ab
ili

ty

Figure 15. Probability versus the number of extended relations.

Virtual flow-net for accountability and forensics D. Takahashi, Y. Xiao and K. Meng
7. PROBLEMS AND CHALLENGES IN
USER–RELATIONSHIP GRAPH

There are many networks other than the Internet in reality,
such as telecommunications and cell phone networks.
Systems include computer systems, network systems, e-mail
systems, telephone systems, cellular phone systems, and so
on. Typically, there exist as many networks as the number
of distinct (unique) systems (organizations). The log files
and flow-nets for heterogeneous systems are used separately.
In other words, because each of these networks has its own
communication logs, they can be used to construct flow-nets
and URGs for its own purposes. For example, a telecommu-
nication company has its own call logs, that is, who called
whom, when they called, and the length of the call. From
these logs, it is easy to construct flow-nets and URGs repre-
senting individuals’ relations, and again, these URGs are
used to discover virtually invisible links between individuals
in order to compensate for the lack of information.
2522 Secur
However, for a cluster of heterogeneous systems, aggregat-
ing every flow-net or integrating URGs into a flow-net to
create a flow-net with virtual links concerning an individual
has some difficulties. For example, a flow-net constructed
from e-mail logs and a flow-net constructed from cell phone
logs cannot have any relations to each other. More precisely,
two people who are in fact identical hardly associate with
each other in flow-nets in heterogeneous systems. How do
we know two IDs from different heterogeneous systems come
from the same person?

Moreover, we must also be concerned with privacy
issues. As we mentioned before, computer forensic analysts
must involve several logs in just one investigation because
these log systems usually keep different aspects of criminal’s
activities. For example, the CARE database developed by the
Care Research and Development Laboratory at the Univer-
sity of Alabama [90] keeps drivers’ records of violations
and accidents as well as the drivers’ information, such as
drivers’ license numbers, birthdates, addresses, and so on.
This information is kept at the police department and used
for prediction and prevention of future accidents and viola-
tion of the traffic rules [90]. The information is also used
for the early detection of criminals. The social security
offices issue a social security number to each individual
and keep information about the individual, which is specific
to him or her, including his or her citizenship, visa status, and
so on. A problem is that there are barriers that prevent the indi-
vidual’s privacy from penetrating through different organiza-
tions, but these barriers are necessary to maintain the
confidentiality of the information. Accordingly, the situation
adds difficulty to the construction of flow-nets, URGs,
EURGs, and extended flow-nets. This is because the construc-
tion of flow-nets and URGs requires the cooperation of differ-
ent organizations to gather other aspects of criminal behaviors.
8. CONCLUSION

Our primary concerns have been the utilization of log files of
particular systems in order to support digital forensic analyses.
The log files range from a simple system log file to a server
side Web-based e-mail log file. Typically, log files are just
users’ activities ordered sequentially, and not by users or
resources, but they are flawed and sometimes very confusing.
In the flow-net data structure, the information of log files is op-
timized and organized user-by-user and resource-by-resource,
and actions comprising several events (e.g., a large data trans-
fer in the computer networks utilizes a number of packets) are
pulled together into one event. In our procedure, we intend to
organize all available data in log files into this beneficial flow-
net data structure to allow less searching time to be required in
investigations, especially in determining covert channels.

However, it is easily supposed that our investigations of
covert channels are not completed because of the lack of
information. In other words, although we can specify who
leaks a secret and who receives it, we cannot find a possible
route on which this secret passed. Thus, to enhance our
investigations of covert channels, in this paper, we designed
ity Comm. Networks 2014; 7:2509–2526 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Virtual flow-net for accountability and forensicsD. Takahashi, Y. Xiao and K. Meng
auxiliary steps to compensate for this lack of information.
Two new concepts were integrated into our flow-net data
structure: a URG, or social network, and k-connectivity. In
addition, according to the type of the original data, we
designed two kinds of URGs, and they are called a regular
URG and EURG. In regular URGs, all the connections
involved in a social network are direct. For example, because
Web-based e-mail log files provide direct relations of users,
URGs constructed from these data are regular URGs. On
the other hand, in the system log files, events do not show
direct connections of users, but instead, users are connected
through some resources that they share. Therefore, URGs
constructed from this kind of data are indirect. Accordingly,
we aggregate these two kinds of URGs into one constructing
another URG, called an EURG.

Finally, we put weights of links of the graphs to show
the likelihood of a user knowing another, so our investiga-
tions rely on these probabilities to construct virtual links in
constructed flow-net data structures.

Experiments show that the use of EURGs may increase
the probability of tracing the information leakage.
ACKNOWLEDGEMENTS

This work is supported in part by the US National Science
Foundation (NSF) under the grant numbers CNS-0737325,
CNS-0716211, CCF-0829827, and CNS-1059265.
REFERENCES

1. Kruse WG II, Heiser JG. Computer Forensics: Inci-
dent Response Essentials. Addison-Weasley Profes-
sional, 2001.

2. Takahashi D, Xiao Y. Retrieving knowledge from
auditing log files for computer and network forensics
and accountability, Vol. 1, (Wiley) Security and Com-
munication Networks. No. 2, Feb. 29, 2008; 147–160.

3. Adamic L, Adar E. How to search a social network.
Social Networks 2005; 27(3): 187–203.

4. Killworth P, Bernard H. Reverse small world experiment.
Social Networks 1978; 1: 159–192.

5. Killworth PD, Bernard HR. A pseudomodel of the
small world problem. Social Forces 1979; 58(2):
477–505.

6. Lunfberg CC. Patterns of acquaintanceship in society and
complex organization: a comparative study of the small
world problem. The Pacific Sociological Review 1975;
18: 206–222.

7. Milgram S. The small-world problem. Psychology
Today 1967; 1: 62–67.

8. Travers J, Milgram S. An experimental study of the
small world problem. Sociometry 1969; 32: 425–443.

9. Dodds PS, Muhamad R, Watts DJ. An experimental
study of search in global social networks. Science
2003; 301: 827–829.
Security Comm. Networks 2014; 7:2509–2526 © 2011 John Wiley & Sons, Ltd
DOI: 10.1002/sec
10. Watts DJ, Dodds PS, Newman MEJ. Identity and search
in social networks. Science 2002; 296: 1302–1305.

11. Kleinberg J. Navigation in a small world. Nature 2000;
406.

12. Kleinberg J. Small-world phenomena and the dynamics
of information. Advances in Neural Information Proces-
sing Systems (NIPS) 2001; 14.

13. Granovetter S. The strength of weak ties. The American
Journal of Sociology 1973; 78: 1360–1380.

14. Khuller S, Raghavachari B. Improved approximation
algorithms for uniform connectivity problems. The
27th Annual ACM Symposium on Theory of Comput-
ing (STOC), 1995.

15. Fu B, Xiao Y. An implementation scheme of flow-net
and its applications on detecting attacks in wireless
networks. Proc. of IEEE GLOBECOM 2010

16. Xiao Y, Meng K, Takahashi D. Accountability using
flow-net: design, implementation, and performance
evaluation. (Wiley Journal of) Security and Communi-
cation Networks, Special Issue on Security and Privacy
in Emerging Information Technologies, accepted,
DOI: 10.1002/sec.348.

17. Takahashi D, Xiao Y, Meng K, Creating user–relation-
ship-graph in use of flow-net and log files for computer
and network accountability and forensics. Proceedings
of the IEEE Military Communications Conference
2010 (IEEE MILCOM 2010).

18. Xiao Y, Yue S, Fu B, Ozdemir S. GlobalView: building
global view with log files in a distributed/networked sys-
tem for accountability. (Wiley Journal of) Security and
Communication tworks, accepted, DOI: 10.1002/sec.374.

19. Liu J, Xiao Y. Temporal accountability and ano-
nymity in medical sensor networks. ACM/Springer
Mobile Networks and Applications (MONET), Spe-
cial issue on Ubiquitous Body Sensor Networks,
accepted, DOI: 10.1007/S11030-010-0254-6.

20. Takahashi D, Xiao Y, Zhang Y, Chatzimisios P,
Chen HH. IEEE 802.11 user fingerprinting and its
applications. Computers and Mathematics with Appli-
cations 2010; 60(2): 307–318.

21. Meng K, Xiao Y, Vrbsky SV. Building a wireless cap-
turing tool for WiFi. (Wiley Journal of) Security and
Communication Networks 2009; 2(6); 654–668.

22. Y Xiao. Accountability for wireless LANs, ad hoc net-
works, and wireless mesh networks. IEEE Communi-
cation Magazine, Special Issue on Security in Mobile
Ad Hoc and Sensor Networks. 2008; 46(4): 116–126.
DOI: 10.1109/MCOM.2008.4481350

23. Takahashi D, Xiao Y. Retrieving knowledge from
auditing log files for computer and network forensics
and accountability. (Wiley Journal) Security and Com-
munication Networks 2008; 1(2): 147–160, DOI:
10.1002/sec.10
2523.

Virtual flow-net for accountability and forensics D. Takahashi, Y. Xiao and K. Meng
24. Fu B, Xiao Y, Q-accountable: a overhead-based quanti-
fiable accountability in wireless networks. Proceedings
of IEEE Consumer Communications and Networking
Conference (IEEE CCNC 2012).

25. Xiao Z, Y Xiao, Du D. Building accountable smart
grids in neighborhood area networks. Proceeding of
The IEEE Global Telecommunications Conference
2011 (IEEE GLOBECOM 2011).

26. Zeng L, Chen H, Xiao Y.Accountable administration
and implementation in operating systems. Proceeding
of The IEEE Global Telecommunications Conference
2011 (IEEE GLOBECOM 2011).

27. Xiao Z, Xiao Y. Accountable MapReduce in cloud
computing. Proceedings of The IEEE International
Workshop on Security in Computers, Networking
and Communications (SCNC 2011).

28. Liu J, Xiao Y, Gao J. Accountability in smart grids.
Proceedings of IEEE Consumer Communications and
Networking Conference 2011 (IEEE CCNC 2011), Smart
Grids Special Session.

29. Xiao Z, Xiao Y, Wu J. A quantitative study of ac-
countability in wireless multi-hop networks. Proceed-
ings of 2010 39th International Conference on
Parallel Processing (ICPP 2010).

30. Xiao Z, Xiao Y. PeerReview analysis and re-evaluation
for accountability in distributed systems or networks.
Proceedings of the 4th International Conference on In-
formation Security and Assurance (ISA2010), CCIS
76, 149–162, 2010.

31. Xiao Z, Xiao Y. P-accountable networked systems.
Proceeding of INFOCOM 2010, Work in Progress
(WIP) Track, acceptance rate is 28% (27 over 97).

32. Ramsey BW, Mullins BE, Thomas RW, Andel TR.
Subjective audio quality over a secure IEEE 802.11n
network. International Journal of Security and Net-
works 2011; 6(1): 53–63.

33. Xiao Y. Editorial. International Journal of Security and
Networks 2011; 6(1): 1–1.

34. Kundur D, Feng X, Mashayekh S, Liu S, Zourntos T,
Butler-Purry KL. Towards modelling the impact of
cyber attacks on a smart grid. International Journal
of Security and Networks 2011; 6(1): 2–13.

35. Kalogridis G, Denic SZ, Lewis T, Cepeda R. Privacy pro-
tection system and metrics for hiding electrical events. In-
ternational Journal of Security and Networks 2011; 6(1):
14–27.

36. Li F, Luo B, Liu P. Secure and privacy-preserving
information aggregation for smart grids. International
Journal of Security and Networks 2011; 6(1): 28–39.

37. Zhang J, Gunter CA. Application-aware secure
multicast for power grid communications. Interna-
tional Journal of Security and Networks 2011; 6(1):
40–52.
2524 Secur
38. Choi T, Acharya HB. Is that you? Authentication in a
network without identities. International Journal of
Security and Networks 2011; 6(4).

39. Chai Q, Gong G. On the (in)security of two
joint encryption and error correction schemes. In-
ternational Journal of Security and Networks 2011;
6(4)

40. Tang S, Li W. An epidemic model with adaptive
virus spread control for wireless sensor networks.
International Journal of Security and Networks
2011; 6(4).

41. Luo G, Subbalakshmi KP. KL-sense secure image ste-
ganography. International Journal of Security and
Networks 2011; 6(4).

42. Chang W, Wu J, Tan CC. Friendship-based location
privacy in mobile social networks. International Jour-
nal of Security and Networks 2011; 6(4).

43. Zhao X, Li L, Xue G. Authenticating strangers in online
social networks. International Journal of Security and
Networks 2011; 6(4).

44. Walker D, Latifi S. Partial iris recognition as a viable bio-
metric scheme. International Journal of Security and Net-
works 2011; 6(2/3).

45. Desoky A. Edustega: an education-centric steganography
methodology. International Journal of Security and Net-
works 2011; 6(2/3).

46. Ampah N, Akujuobi C, Alam S, Sadiku M. An intrusion
detection technique based on continuous binary commu-
nication channels. International Journal of Security and
Networks 2011; 6(2/3).

47. Chen H, Sun B. Editorial. International Journal of
Security and Networks 2011; 6(2/3).

48. Barua M, Liang X, Lu R, Shen X. ESPAC: enabling
security and patient-centric access control for eHealth
in cloud computing. International Journal of Security
and Networks 2011; 6(2/3).

49. Jaggi N, Reddy UM, Bagai R. A three dimensional
sender anonymity metric. International Journal of Se-
curity and Networks 2011; 6(2/3).

50. Sharma MJ, Leung VCM. Improved IP multimedia
subsystem authentication mechanism for 3G-WLAN
networks. International Journal of Security and Net-
works 2011; 6(2/3).

51. Cheng N, Govindan K, Mohapatra P. Rendezvous
based trust propagation to enhance distributed network
security. International Journal of Security and Net-
works 2011; 6(2/3).

52. Fathy A, ElBatt T, Youssef M. A source authentication
scheme using network coding. International Journal
of Security and Networks 2011; 6(2/3).

53. Liu L, Xiao Y, Zhang V, Faulkner A, Weber K.
Hidden information in Microsoft Word. International
Journal of Security and Networks 2011; 6(2/3).
ity Comm. Networks 2014; 7:2509–2526 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Virtual flow-net for accountability and forensicsD. Takahashi, Y. Xiao and K. Meng
54. Chow SSM, Yiu S. Exclusion–intersection encryption.
International Journal of Security and Networks 2011;
6(2/3).

55. Chinnappen-Rimer S, Hancke GP. Actor coordination
using info-gap decision theory in wireless sensor and
actor networks. International Journal of Sensor Net-
works 2011; 10(4): 177–191.

56. Zhang F, Dojen R, Coffey T. Comparative performance
and energy consumption analysis of different AES
implementations on a wireless sensor network node. In-
ternational Journal of Sensor Networks 2011; 10(4):
192–201.

57. Xiao Y, Takahashi D, Liu J, Deng H, Zhang J. Wire-
less telemedicine and m-health: technologies, applica-
tions and research issues. International Journal of
Sensor Networks 2011; 10(4): 202–236.

58. Rosi A, Berti M, Bicocchi N, Castelli G, Corsini A,
Mamei M, et al. Landslide monitoring with sensor net-
works: experiences and lessons learnt from a real-
world deployment. International Journal of Sensor
Networks 2011; 10(3): 111–122.

59. Wang F, Zeng P, Yu H, Xiao Y. Error compensation
algorithm in wireless sensor networks synchronisation.
International Journal of Sensor Networks 2011; 10(3):
123–131.

60. Toscani D, Giordani I, Cislaghi M, Quarenghi L.
Querying sensor data for environmental monitoring.
International Journal of Sensor Networks 2011; 10
(3): 132–142.

61. Fedor S, Collier M, Sreenan CJ. Cross-layer routing
and time synchronisation in wireless sensor networks.
International Journal of Sensor Networks 2011; 10
(3): 143–159.

62. Mishra V, Mathew J, Pradhan DK. Fault-tolerant de-
Bruijn graph based multipurpose architecture and
routing protocol for wireless sensor networks. Inter-
national Journal of Sensor Networks 2011; 10(3):
160–175.

63. Tseng C, Lee S, Prasad NR, Wódczak M. Editorial. In-
ternational Journal of Sensor Networks 2011; 10(1/2):
1–2.

64. Kafetzoglou S, Papavassiliou S. Energy-efficient
framework for data gathering in wireless sensor net-
works via the combination of sleeping MAC and data
aggregation strategies. International Journal of Sensor
Networks 2011; 10(1/2): 3–13.

65. Krontiris I, Dimitriou T. Scatter—secure code authen-
tication for efficient reprogramming in wireless sensor
networks. International Journal of Sensor Networks
2011; 10(1/2): 14–24.

66. Boubiche D, Bilami A. HEEP (Hybrid Energy Effi-
ciency Protocol) based on chain clustering. International
Journal of Sensor Networks 2011; 10(1/2): 25–35.
Security Comm. Networks 2014; 7:2509–2526 © 2011 John Wiley & Sons, Ltd
DOI: 10.1002/sec
67. SolimanH, Al-OtaibiM. EnhancingAODV routing pro-
tocol over mobile ad hoc sensor networks. International
Journal of Sensor Networks 2011; 10(1/2): 36–41.

68. Jaggi N, Kar K. Multi-sensor activation for temporally
correlated event monitoring with renewable energy
sources. International Journal of Sensor Networks
2011; 10(1/2): 42–58.

69. Lu L, Wu JC, Chen S. A cluster-based algorithm for
redundant nodes discovery in dense sensor networks.
International Journal of Sensor Networks 2011;
10(1/2): 59–72.

70. Morreale P, Qi F, Croft P. A green wireless sensor net-
work for environmental monitoring and risk identifica-
tion. International Journal of Sensor Networks 2011;
10(1/2): 73–82.

71. Wodczak M. Autonomic cooperative networking for
wireless green sensor systems. International Journal
of Sensor Networks 2011; 10(1/2): 83–93.

72. Poornima AS, Amberker BB. PERSEN: power-
efficient logical ring based key management for clus-
tered sensor networks. International Journal of Sensor
Networks 2011; 10(1/2): 94–103.

73. Li F. Adaptive resource allocation in multiuser
cooperative networks with proportional rate
constraints. International Journal of Sensor Networks
2011; 10(1/2): 104–110.

74. Amundson I, Sallai J, Koutsoukos X, Ledeczi A,
Maroti M. RF angle of arrival-based node localisation.
International Journal of Sensor Networks 2011; 9(3/4):
209–224.

75. Shen C, Hong Y-WP, Chao C, Yang S. Editorial. In-
ternational Journal of Sensor Networks 2011; 9(3/4):
121–123.

76. Arienzo L, LongoM. Energy-efficient collaborative track-
ing in wireless sensor networks. International Journal of
Sensor Networks 2011; 9(3/4): 124–138.

77. Azad AP, Chockalingam A. Enhancing lifetime of wire-
less sensor networks using multiple data sinks. Interna-
tional Journal of Sensor Networks 2011; 9(3/4): 139–157.

78. Majumdar A, Ward RK. Increasing energy efficiency in
sensor networks: blue noise sampling and non-convex
matrix completion. International Journal of Sensor
Networks 2011; 9(3/4): 158–169.

79. Jedermann R, Becker M, Gorg C, Lang W. Testing
network protocols and signal attenuation in packed food
transports. International Journal of Sensor Networks
2011; 9(3/4): 170–181.

80. Taniguchi Y, Kitani T, Leibnitz K. A uniform airdrop
deployment method for large-scale wireless sensor net-
works. International Journal of Sensor Networks 2011;
9(3/4): 182–191.

81. Tran TD, Agbinya JI, Al-Jumaily AA. Per node deploy-
ment based detection of controlled link establishment
2525.

Virtual flow-net for accountability and forensics D. Takahashi, Y. Xiao and K. Meng
attack in distributed sensor networks. International
Journal of Sensor Networks 2011; 9(3/4): 192–208.

82. Takahashi D, Xiao Y. Complexity analysis of retrieving
knowledge from auditing log files for computer and net-
work forensics and accountability. Proc. of IEEE ICC
2008, 1474–1478.

83. Xiao Y. Flow-net methodology for accountability in wire-
less networks. IEEE Network, Vol. 23, No. 5, Sept./Oct.
2009, 30–37.

84. Xiao Y, Meng K, Takahashi D. Implementation and
evaluation of accountability using flow-net in wireless
networks. Proc. of IEEE MILCOM 2010
2526 Secur
85. Elmasri R, Navathe SB. Fundamentals of Database
Systems, 5th edn, Pearson Education, Benjamin/
Cummings, 2006.

86. http://www.jgraph.com
87. http://www.mysql.com/
88. http://www.java.com
89. http://www.mysql.com/products/connector/j/
90. Ding L, Dixon B. Using an edge-dual graph and

k-connectivity to identify strong connections in social
networks. Proc. of the ACM 46th Annual Southeast
Regional Conference, 475–480, 2008.
ity Comm. Networks 2014; 7:2509–2526 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

http://www.jgraph.com
http://www.mysql.com/products/connector/j/

