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SAI: A Suspicion Assessment-Based Inspection
Algorithm to Detect Malicious

Users in Smart Grid
Xiaofang Xia , Yang Xiao , Senior Member, IEEE, and Wei Liang , Senior Member, IEEE

Abstract— Integrated with cutting-edge equipment and tech-
nologies, smart grid takes prominent advantages over traditional
power systems. However, hardware and software techniques also
bring smart grid numerous security concerns, especially various
cyberattacks. Malicious users can launch cyberattacks to tamper
with smart meters anytime and anywhere, mainly for the purpose
of stealing electricity. This makes electricity theft much easier to
commit and more difficult to detect. Researchers have devised
many approaches to identify malicious users. However, these
approaches suffer from either poor accuracy or expensive cost of
deploying monitoring devices. This paper aims to locate malicious
users using a limited number of monitoring devices (called
inspectors) within the shortest detection time. Before inspectors
conduct any inspection, suspicions that users steal electricity
are comprehensively assessed, mainly through analyzing prior
records of electricity theft as well as deviations between the
reported and predicted normal consumptions. On the basis of
these suspicions, we further propose a suspicion assessment-based
inspection (SAI) algorithm, in which the users with the highest
suspicions will be first probed individually. Then, the other users
will be probed by a binary tree-based inspection strategy. The
binary tree is built according to users’ suspicions. The inspection
order of the nodes on the binary tree is also determined by the
suspicions. The experiment results show that the SAI algorithm
outperforms the existing methods.

Index Terms— Smart grid, electricity theft, suspicion
assessment, malicious meter inspection, security.

I. INTRODUCTION

INTEGRATED with cutting-edge equipment and technolo-
gies (e.g., advanced metering infrastructure and modern
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information and communication technologies), smart grid sig-
nificantly improves power systems’ performance in reliabil-
ity, economics, and efficiency [1], [2]. However, advanced
hardware and software techniques also bring smart grid many
vulnerabilities, among which security concerns garner the most
attentions [3]. As a significant concern of utility companies,
electricity theft1 has been notorious since the establishment of
traditional power systems.

Many factors influence users into stealing electricity. These
factors include higher energy prices, unemployment, weak
economic situations, weak accountability and enforcement
of laws, and even corruption of employees in utility com-
panies [4]. Some people are reported to commit electricity
theft for the purpose of masking their illegal operations (for
example, growing marijuana). On the whole, electricity theft
is much more severe in developing countries, such as India
and South Africa, than in developed countries, such as USA
and UK. It was reported that the revenue losses of worldwide
electricity theft was about $89.3 billion as early as 2014 [5].

In smart grid, malicious users2 can steal electricity by
either physical attacks or cyber attacks. The most popular
physical attacks include bypassing a feeder, inverting a meter,
and employing a strong permanent magnet. These can also
be used in traditional power systems. The most common
cyber attacks include modifying firmware/storage and stealing
credentials of smart meters [6]. It is reported that malicious
users can compromise smart meters with only a moderate level
of computer knowledge. With the assistance of some low-
cost tools and software readily available on the Internet [7],
malicious users can easily launch cyber attacks. In general,
cyber attacks are much more popular than physical attacks in
smart grid.

Conventionally, utility companies employ personnel to
physically check the tamper-evident seals door-to-door for
targeting malicious users. However, this approach is labor-
consuming and cannot deal with electricity theft caused by
cyber attacks. Data mining techniques such as extreme learn-
ing machine and support vector machine are leveraged to
analyze the fine-grained electricity consumption data, aiming
at an exposure of abnormality [8]–[12]. These techniques have
a poor accuracy, which is about 60% ∼ 70% [13]. It will raise
controversy between users and utility companies. Different

1Electricity theft is defined as using electricity from utility companies
through totally or partially bypassing metering system or interfering this
system to adulterate its measurement.

2The users stealing electricity are referred to as “malicious users”.
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from the above works, the authors in papers [14]–[22] propose
to install redundant monitoring devices such as inspectors
and sensors to detect malicious users. Nonetheless, these
works suffer from either prohibitively expensive deployment
cost or long detection time.

In this paper, we employ a limited number of inspec-
tors to locate malicious users. The inspectors are function-
enhanced smart meters with stronger computation capability
and larger storage space. Our goal is to locate all malicious
users within the shortest detection time. After detecting the
existence of malicious users, we assess suspicions that users
commit electricity theft before inspectors conduct any fur-
ther inspections. The suspicions are comprehensively assessed
through analyzing prior records of electricity theft from the
perspective of criminology, as well as deviations between
reported and predicted normal electricity consumptions. On the
basis of these suspicions, we propose an inspection algorithm,
called Suspicion Assessment based Inspection (SAI), in which,
inspectors first probe users with the highest suspicions indi-
vidually. After this process, the remaining users are probed
by a binary tree based inspection strategy. The binary tree,
whose leaf nodes represent the remaining users, is built in line
with the suspicions. Users with larger suspicions have shorter
distances from the root. We apply this particular binary tree as
a logical structure to facilitate the inspection process, with each
node representing one possible inspection step. The inspection
order of the nodes on the binary tree is also determined
by the suspicions. Specifically speaking, between two sibling
nodes, the inspector will always first inspect the subtree of
the node where users’ average suspicion is larger. The SAI
algorithm can deal with static cases where new malicious
users appear during the inspection process as well as dynamic
cases in which new malicious users do not appear. The
major contributions of this paper are highlighted as follows:
(1) We assess suspicions that users steal electricity through
analyzing prior records as well as consumption deviations;
(2) We propose the SAI algorithm, by which users with the
highest suspicions will be first probed individually. Then,
the remaining users will be probed by a binary tree based
inspection strategy; (3) Experiment results show that the SAI
algorithm outperforms existing methods.

The rest of this paper is organized as follows: Section II
reviews the related work. Section III introduces the problem.
Section IV assesses suspicions that users commit electricity
theft. Section V demonstrate the working strategy of the
SAI algorithm. Section VI reports experiment results and
Section VII concludes the paper.

II. RELATED WORK

Extensive works have been done on detection of electricity
theft in smart grid. Defensive techniques vary from hardening
smart meters to applying various inspection algorithms.

In papers [23], [24], the authors design several new types
of smart meters that have an extra function of automati-
cally detecting electricity theft. However, adding hardware,
such as co-processors and tamper resilient memory, inevitably
increases the price of smart meters. There are millions of
smart meters that have already been installed around the globe.
Billions of smart meters are expected to be deployed in the

next few years. To replace all meters with newly designed
smart meters, the cost will be extraordinarily huge. Moreover,
they cannot deal with the cases where malicious users intercept
communications to block or alter consumption readings during
transmission. Thus, in both industrial and scientific communi-
ties, the envisioned meters are not recommended as a priority.

In papers [8]–[10], [25], the authors try to address the
electricity theft issue by applying various machine learning
approaches. Among these approaches, a classifier is first
trained with a historical dataset. It is then applied to find
irregularities or deviations in the customer energy consumption
profiles. For example, in papers [8], [9], a support vec-
tor machine algorithm and a genetic algorithm are jointly
employed to analyze meters’ load profile information and
additional attributes. Similarly, an extreme learning machine
algorithm and its online sequential version [10] are utilized to
classify meters and reveal whether any significant irregularities
emerge in their electricity consumptions. These papers aim
to exposing abnormal behaviors that are highly correlated
with non-technical loss activities. However, they have a rela-
tively low detection rate but a relatively high false positive
rate. This will raise controversy between users and utility
companies.

Another radically different line of work is to install specific
monitoring devices. In papers [18]–[20], a central observer
meter is employed to register the total electricity in a neigh-
borhood. Malicious users are identified through modeling
users’ behaviors with different mathematical approaches. For
example, in papers [18], Lagrange polynomial interpolation
is used. In papers [29], the authors propose a Binary-Coded
Grouping-based Inspection (BCGI) algorithm which groups
users based on digit 1 of users’ binary notations. The BCGI
algorithm can exactly locate a unique malicious user with just
one inspection. However, the BCGI algorithm can only deal
with the case where there is one malicious user. In papers
[15]–[17], an “inspector box” is installed at the distribution
room in each neighborhood area network (NAN). Malicious
users are identified by comparing the inspectors’ own readings
with the users’ reported readings. The authors in papers
[16], [17] adopt a binary tree as a logical structure to facilitate
the inspection process. They propose a series of inspection
algorithms, by which inspectors dynamically traverse on the
binary tree to detect malicious users. Among these algorithms,
Adaptive Tree Inspection (ATI) algorithm [16] is the most
practical. It is a heuristic approach by which inspectors skip
some internal nodes on the binary tree to directly inspect
nodes at lower levels. Difference-Comparison-based Inspec-
tion (DCI) algorithm [17] can skip a large amount of nodes
on the binary tree, and hence can locate malicious users faster.
However, it assumes that inspectors can check malicious users’
logs to know their true electricity consumptions. In the real
world, malicious users will be smart enough to tamper with all
logs when compromising smart meters. This makes the DCI
algorithm less practical.

Some researchers apply state estimation-based approaches
to address electricity theft detection issues. However, as indi-
cated in [26], [27], electricity theft using state estimation can
only be detected at the sub-station level instead of at the
end user level, i.e., theft detection of middle-to-low voltage
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transformers serving malicious users. To explicitly identify
malicious users, further analyses or inspections are needed.
For example, the paper [28] follows state estimation results
to localize electricity usage irregularity at the distribution
transformers and proposes an analysis of variance (ANOVA)
method to create a suspect list of customers with metering
problems. In [27], the results calculated by a state estimator
and the data captured by filed devices are used as inputs of
a multivariate procedure of monitoring and control to detect
a possible power loss at distribution transformer terminals;
afterwards, the authors apply a pathfinding procedure based
on an A-star (A*) algorithm to locate the consumption points
with power loss, whose coordinates in a geographical map are
further determined using a geographical information system.

During the 1970s and early 1980s, evidence accumulated to
indicate that a relatively small group of offenders committed
most serious offenses [34]. These findings, coupled with
increasing pressures on the budgets of criminal justice agen-
cies, led to calls for more effective use of public expenditures
for crime control by identifying and incarcerating the most
serious and persistent offenders [34]. These calls challenge
the research community to focus on the problem of predicting
which individuals will commit crimes in the future. Many
researches [34]–[39] are conducted to explore the issue of
old prior records and their ability to predict future offending.
In this paper, we will utilize some of these results and apply
them to our applications.

In this paper, we propose the SAI algorithm to detect mali-
cious users in the NAN. Before inspectors conduct inspections,
suspicions that users steal electricity are assessed through
analyzing prior records of electricity theft as well as deviations
between reported and predicted normal electricity consump-
tions. In the SAI algorithm, users with the highest suspicion
will be first probed individually. Then, the remaining users will
be probed in line with a binary tree based inspection strategy.
The inspection order of the nodes on the binary tree is also
determined by the suspicions.

III. PROBLEM STATEMENT

In smart grid, electrical grids and communication networks
overlay with each other [30]. In this paper, we consider a
neighborhood area network (NAN) in a smart grid, which
is defined as the utility companies’ last-mile, outdoor access
network that connects smart meters and distribution automa-
tion devices to a wide-area network (WAN) [31], as shown
in Fig. 1, in which the solid and dashed lines with double-
ended arrows represent two-way electrical flows and com-
munication flows, respectively. The end users’ smart meters
are connected with the distribution automation devices which
are usually installed at some places (e.g., on an electrical
pole or in a distribution room) in the NAN via an individual
power line. This implies that the NAN usually covers a small
area (e.g., an apartment building). We suppose that there are
a total number of n users in the NAN which are notated as
U = {1, 2, . . . , n}. At each user’s premises there is a smart
meter which records and reports electricity consumptions
periodically. Let integers, t = 1, 2, . . ., denote smart meters’

Fig. 1. A simplified architecture of smart grid.

reporting periods. We assume that smart meters start working
from period 1. Based upon utility companies, users can be
classified into two categories: (1) honest users who report
electricity consumptions genuinely and (2) malicious users
who report electricity consumptions less than what are actually
consumed.

This paper aims to identify all malicious users within the
shortest detection time, which is formulated as the Malicious
Meter3 Inspection (MMI) problem in [16]. For this purpose,
we install an inspector box [16] which serves as the distribu-
tion device and is assumed to be either secure or equipped with
tamper-resistant components/functions. The inspector box con-
tains a head inspector and several sub-inspectors. For example,
in Fig. 1, we elaborate a possible design of the inspector
box with one sub-inspector. The head inspector monitors all
users in the NAN. It aims to detect whether there are reading
anomalies in the NAN. Once the head inspector detects reading
anomalies, sub-inspectors will try to locate malicious users
exactly. We assume that users monitored by sub-inspectors
can be arbitrarily changed manually or automatically, without
interfering with any normal electricity services [16].

We now explain how the inspectors probe users. Let G
denote a group of users monitored by an inspector, which can
be the head inspector or a sub-inspector. For the head inspec-
tor, we have G = U ; for a sub-inspector, we have G ⊆ U .
When an inspector probes users in G, it works as follows:
(1) Measuring the total amount of electricity distributed to the
users in G; (2) Receiving the reported electricity consumptions
of the users in G. If the dispute between the inspector’s
own reading and the summation of the reported readings
exceeds a previously specified threshold, we can conclude
that there are malicious users in G. The inspection result is
correspondingly called “dirty”. Otherwise, if the dispute is less
than the threshold, all the users in G can be regarded as being
honest. The inspection result is accordingly called “clean”.
In a real application, the threshold is equal to the summation of
technical losses during the electricity transmission of all users
being probed [16], [22]. Even though it is difficult to obtain the
accurate value of technical losses of each user, we can estimate
it using some existing mathematical models [53], which are
not detailed here since they are out of the scope of this paper.
To deal with the bias between the accurate and estimated
technical loss, we can introduce a compensation value which

3In this paper, the two terms “user” and “meter” are exchangeable.

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on January 21,2022 at 19:15:24 UTC from IEEE Xplore.  Restrictions apply. 



364 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Algorithm 1 The Probe Operation
1: procedure PROBE(G)
2: Measuring the total electricity consumed by users in G;
3: Receiving the reported readings of users in G;
4: if the dispute exceeds a specific threshold then
5: There are malicious users in G; � a dirty inspection

result
6: else
7: Users in G are honest; � a clean inspection result
8: end if
9: end procedure

can be carefully chosen by performing trial experiments before
actually employing a specific inspection algorithm to locate
malicious users in a specific NAN [22]. We conclude the probe
operation in Algorithm 1. Note that in this paper, no matter the
head inspector detects reading anomalies or the sub-inspectors
locate malicious users, they conduct probing operations. When
a sub-inspector performs the probing operation for one time,
we say it conducts one inspection (step).

Note that each probing operation (i.e., inspection) lasts for
one reporting period. Thus, the goal of this paper, which,
as aforementioned, is to minimize the detection time, can
be abstracted as minimizing the number of inspection steps.
We consider both static cases and dynamic cases [16]. In static
cases, no new malicious users will appear during the inspection
process. On the other hand, in dynamic cases, new malicious
users will appear during the inspection process.

In this paper, we assume that once a user is identified as
being malicious, the utility company will immediately do the
following two things: (1) noting down the period when the
dirty meter is caught stealing electricity; (2) disconnecting
this user from the service of electricity. The first assumption
is obviously practical. We refer to these periods as users’
prior records of electricity theft. With regard to the second
assumption, it is consistent with the situation in the real world.
As reported in [32], if the utility companies find that meter
tampering has occurred, they will immediately disconnect the
account and require the individual to come into the office to
pay their whole balance and even a fine.

The main notations in this paper are listed in Table I.
In general, we use lowercase letters to denote variables,
uppercase letters to notate sets, and bold uppercase letters to
represent vectors.

IV. SUSPICION ASSESSMENT

In this section, we assess suspicions that users commit
electricity theft, through analyzing prior records of electricity
theft as well as deviations between reported and predicted
normal consumptions.

A. Prior Records

In this subsection, we assess suspicions that users steal elec-
tricity through analyzing prior records of electricity theft from
the perspective of criminology. This is reasonable because
electricity theft is essentially a particular form of economic

TABLE I

NOTATIONS

crimes [33]. Many researches [34]–[39] are conducted to
explore the issue of old prior records and their ability to
predict future offending. Several well-documented empirical
facts are summarized as follows [35], [36]: (1) Compared to
individuals who have never offended, individuals who have
offended in the past are relatively more likely to offend in
the future. (2) Offenders with more prior criminal records are
more likely to recidivate in the future. As shown in Fig. 2(a),
with the increase of the number of prior criminal records,
the risk of recidivism first increases and then stays stable.
(3) The risk of recidivism declines as the time since the last
criminal act increases. As shown in Fig. 2(b), individuals
with criminal records do exhibit significantly higher risks of
future criminal conducts than individuals without criminal
records. However, the difference weakens dramatically and
quickly with the increase of time since the last criminal act.
At last, the risks of new offenses begin to approximate (but not
match).
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Fig. 2. Two well-documented empirical facts [35]. (a) Offenders with more
criminal prior records are more likely to recidivate in the future. (b) The risk
of recidivism declines as the time since the last criminal act increases.

In our case, the offenders are the users stealing electricity.
As aforementioned, in this paper, we assume that once a user
is identified as being malicious, the utility company will note
down the period. Let R (i, t) denote user i ’s prior records
before period t , which are a set of periods when user i is
caught committing electricity theft prior to period t . Particu-
larly, for users who have never stolen electricity until period t ,
we have R (i, t)=∅. For users who have committed electricity
theft for multiple times, we have R (i, t)={ti,1, ti,2, ti,3, · · · },
where ti, j denotes the period when user i is caught committing
electricity theft for the j -th time. Notably, for ti, j ∈ R(i, t),
we have 1 � ti, j ≤ t .

As discussed earlier, the prior criminal records can, to a
large extent, predict the recidivism risk of offenders. Specially,
the total number of prior criminal records and the time since
the last criminal act are the most significant. Thus, we assess
users’ risks of stealing electricity based upon the following two
characteristics: (1) the total number of times that a user has
been caught stealing electricity; for user i with prior records
R (i, t), it can be denoted as |R (i, t)|, where |·| represents
the cardinality of a set; (2) the time interval between the
current period and the period when a user commits the last
electricity theft; for users who have committed electricity theft
before period t , it can be denoted as t −max (R (i, t)), where
max (·) returns the maximum value; particularly, for users with
R(i, t) = ∅, we set this time interval as +∞.

In the real application, when we assess users’ recidivism
risk, it is more practical to measure the time interval since the
last electricity theft with the time unit such as days, weeks,
months, etc., than using the time unit of reporting periods
(which is usually set as 15 minutes as an example). To be con-
sistent with the criminology researches, in this paper we adopt
the time unit of months. Assume that smart meters report a
total number of T readings to the utility companies during one
month. Let y(i, t) = 	 t−max(R(i,t ))

T 
. Then, we use |R(i, t)| and
y(i, t) for assessing users’ recidivism risk. According to the
discussion before, we know that the recidivism risk increases
monotonically with the total number of prior electricity thefts
and decreases monotonically with the time interval since the
last electricity theft. Let r(i, t) denote user i ’s recidivism

risk at period t . Then, we have r(i, t) = f (|R(i, t)|, y(i, t)).

According to the above analysis, we can derive ∂ f
∂|R(i,t)| > 0

and ∂ f
∂y(i,t) < 0.

In this paper, we would like to make the recidivism risk
r(i, t) distributed in the interval (0, 1). Since the sigmoid
function is quite similar to the real world thought process
and adds the element of fuzziness to a conventional linear
process [41], we in this paper use it to assess users’ recidivism
risks, as follows:

r(i, t) = f (|R(i, t)|, y(i, t))

= 1

a + b exp(−w|R(i, t)|−(w−1)y(i, t))
+c(t), (1)

where c(t) is the risk of users with no prior records to commit
electricity theft at period t . The constant a, b are subject to
1
a+c(t) < 1, b > 0, respectively. The coefficient w is a weight
factor satisfying 0 < w < 1.

B. Consumption Deviation

In this subsection, we assess suspicions that users commit
the electricity theft by analyzing deviations between reported
and predicted normal consumptions.

With regard to the prediction of users’ electricity consump-
tions, many kinds of technologies, such as the artificial neural
networks and support vector machines, can be applied [42].
These technologies depend heavily on the computation capa-
bility of the devices. In our case, the inspectors are embedded
devices whose computation ability is not strong enough. Thus,
they are not suitable here. In the real life, people usually
have similar routines on different days. For example, in the
USA, on weekdays, most people leave home for work at about
8:00 a.m. and return home at about 7:00 p.m. This implies
that users’ load curves have a trend to repeat themselves. This
trend, according to the studies on time series [43], is called
“seasonality”. For time series with “seasonality” characteristic,
the Holt-Winters method which belongs to the exponential
smoothing forecasting technique shows excellent prediction
performance [43]. Thus, it is applied here to predict users’
normal electricity consumptions; and the details are given in
subsection IV-D.

Let q � (i, t) and q �� (i, t) denote user i ’s reported and
predicted electricity consumptions at period t , respectively.
Let d (i, t) denote user i ’s consumption deviation at period
t , which is defined as the difference between q � (i, t)
and q �� (i, t). Mathematically speaking, we have d (i, t) =
q �� (i, t)− q � (i, t) .

When analyzing which users are more likely to steal elec-
tricity, the consumption deviation cannot be simply used. This
can be easily understood when we consider the users whose
consumption deviations are almost the same but whose pre-
dicted normal electricity consumptions differ a lot. Obviously,
we cannot say that they are equally likely to commit electricity
theft. Hence, we introduce the concept of relative consumption
deviation which is defined as the ratio of users’ consumption
deviation to predicted normal electricity consumption. Let
dr (i, t) denote user i ’s relative consumption deviation at
period t . Then, we have dr (i, t) = d(i,t )

q ��(i,t ) = q ��(i,t)−q �(i,t )
q ��(i,t ) .
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Fig. 3. An example: users 1, 2, and 3 have the same predicted readings but
different reported readings.

Now, we are faced with the following problem: when we
analyze which users are more likely to commit electricity theft,
is it appropriate for us to consider the relative consumption
deviation just at a certain period? The answer is obviously
not. For example, in Fig. 3, we assume that during the time
interval [t0, t2], users 1, 2, 3 have the same predicted electricity
consumptions; user 1’s reported readings are much smaller
than predicted normal readings; user 2’s reported readings
always lie in between user 1’s reported readings and the
predicted normal readings; user 3’s reported readings are very
close to the (predicted) normal readings for most of the time,
but much smaller than that around period t1. Empirically,
during the time interval [t0, t2], among the three users, user
1 is the most likely to commit electricity theft, while user
3 is the most likely to be honest. However, when we analyze
users’ possibility to commit electricity theft at period t1, if we
just consider the relative consumption deviation at period t1,
this conclusion will not be reached. A more reasonable way
is to observe users’ reported readings and predicted normal
readings during the time interval [t0, t1]. This inspires us to
involve the relative consumption deviation for a while when
analyzing users’ possibility of committing the electricity theft.
Let d̄r (i, t0, t) denote user i ’s average relative consumption
deviation during time interval [t0, t]. Then, we have

d̄r (i, t0, t) = 1

t − t0 + 1

t�
τ=t0

dr (i, τ )

= 1

t − t0 + 1

t�
τ=t0

q �� (i, τ )− q � (i, τ )

q �� (i, τ )
.

We say a larger d̄r (i, t0, t) implies that user i is more likely
to commit the electricity theft at period t . As aforementioned,
the sigmoid function is quite similar to the real world thought
process and adds the element of fuzziness to a conventional
linear process [41]. Thus, we apply it to assess the risk of users
to steal electricity through analyzing consumption deviations,
as follows. Let

h (i, t) = 1

1+ exp
�−d̄r (i, t0, t)

� , ∀t � t0

In the following context, we call h(i, t) as user i ’s deviation
risk at period t . Combining the above two equations, we can
derive the deviation risk

h (i, t) = 1

1+ exp

�
1

t−t0+1

t�
τ=t0

q �(i,τ )−q ��(i,τ )
q ��(i,τ )

� .

Apparently, we have 0 < h (i, t) < 1. For two users i
and j , if h (i, t) > h ( j, t), we say that user i is more
likely to commit the electricity theft at period t than user j .
Let t∗ denote the period when the head inspector detects
reading anomalies. In application, we need to evaluate users’
suspicions only after period t∗. Thus, we usually set t0 = t∗.

C. Electricity Theft Suspicion

In the previous two sub-sections, we first assess the
recidivism risks that users recommit electricity in line with
their prior records from the perspective of criminology.
Then, we further analyze the deviation risks based upon the
deviations between reported readings and predicted normal
readings. By integrating the above two aspects together, we
in the following assess suspicions that users steal electricity.

Let s(i, t) denote the suspicion that user i commits electric-
ity theft at period t . Obviously, the suspicion s(i, t) increases
monotonically with both the recidivism risk r(i, t) and the
deviation risk h(i, t). However, when we analyze the suspicion
s(i, t), should the weight between r(i, t) and h(i, t) be set
statically or dynamically? Since the recidivism risk r(i, t) is
based on prior records, we can say that it represents how user
i behaves in the past. By contrast, the deviation risk h(i, t)
reflects how user i behaves currently. Usually, when making a
decision, although the information related to the past can give
us some clues, we should value more on the present. Based on
this principle, we conclude that the deviation risk h(i, t) should
weigh dynamically more and more with inspection process
going on. Thus, we define the suspicion s(i, t) as

s (i, t) = u	
t−t∗

g 
r(i, t) + (1− μ) h (i, t) , (2)

where 0 < μ < 1 is a weight factor, g is a positive integer.
Due to 0 < r(i, t) < 1 and 0 < h (i, t) < 1, we can derive
0 < s (i, t) < 1.

D. Predicting Normal Electricity Consumptions

In the following, we explain how the Holt-Winters method
works when predicting users’ normal electricity consumptions.
Since the inspectors only can measure the sub-total amount
of a group of users and cannot measure the amount of
a particular user, measurements from the inspectors cannot
be used as baseline. Let Q (i, t) denote user i ’s historical
electricity consumptions before period t , which is a series of
user i ’s actual electricity consumptions. Technically speaking,
we have Q (i, t) = (q (i, 1) , q (i, 2) , . . . , q (i, t − 1)). Before
period t∗, all the users in the NAN are honest. Thus, we have
∀t < t∗, q (i, t) = q � (i, t). However, after period t∗, malicious
users appear. This means users’ reported readings are no
longer trustworthy and that the values q (i, t) ,∀t � t∗ cannot
be determined. Hence, in this paper, we define Q (i, t) as
follows:

Q (i, t) =
��

q � (i, 1) , q � (i, 2) , . . . , q � (i, t − 1)
�
, ∀t < t∗�

q � (i, 1) , q � (i, 2) , . . . , q � (i, t∗ − 1)
�
, ∀t � t∗,

Specifically, let Qρ (i, t) denote user i ’s historical electricity
consumptions in the latest ρ days before period t , where
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ρ ∈ N
+. Let v denote the total number of readings generated

by the smart meters every day. Then, we have

Qρ (i, t) =
��

q � (i, t − ρv) , . . . , q � (i, t − 1)
�
, ∀t < t∗�

q � (i, t∗ − ρv) , . . . , q � (i, t∗ − 1)
�
, ∀t � t∗,

To obtain user i ’s predicted electricity consumption at
period t , i.e., q �� (i, t) ,∀t � t∗, for the purpose of reduc-
ing the computation complexity, we in application choose
Qρ (i, t) rather than Q (i, t). To guarantee the prediction
accuracy, as a rule of thumb, we usually have ρ � 2 [43].
Considering that in reality we only need to predict users’
normal electricity consumption after the head inspector detects
reading anomalies, we in the following simply let Qρ (i, t) =�
q � (i, t∗ − ρv) , . . . , q � (i, t∗ − 1)

�
.

The Holt-Winters method assumes the users’ electricity con-
sumptions comprise of level, trend and seasonal index [49] and
that the forecasting value is obtained through the above three
components. Specifically, with the historical data in Qρ (i, t),
Holt-Winters method predicts user i ’s electricity consumption
η (η ∈ N

+) periods ahead of period t as follows [43] [49]:
q �� (i, t+η) = (d (i, t)+ηe (i, t)) o (i, t+1−v+	(η−1)modv
) ,

where d (i, t) = α q �(i,t)
o(i,t−v) + (1−α) (d (i, t−1)+ e (i, t−1)) ,

e (i, t) = β(d (i, t)−d (i, t−1)) + (1−β) e (i, t−1) , and
o (i, t)=ϕ q �(i,t )

d(i,t ) + (1−ϕ) o (i, t−v) .

The parameters α, β and ϕ are the level, trend, and
seasonal smoothing factors, respectively, which satisfy 0 <
α < 1, 0 < β < 1 and 0 < ϕ < 1. They
could be estimated by minimizing the root mean square
error [49] of the normal electricity consumption predic-

tion, i.e., min :
	

1
(ρ−1)v+1

t∗−1�
t=t∗−(ρ−1)v

(q �� (i, t)− q � (i, t))2.

The initialization of d (i, 0), e (i, 0), and o (i, k) ,∀k =
0, 1, . . . , m − 1 is as follows [50]: d (i, 0) = q � (i, t∗ − ρv) ,

e (i, 0)= 1
v2

v−1�
j=0

�
q � (i, t∗−ρv+v+ j)−q � (i, t∗−ρv+ j)

�
, and

o (i, k) = 1
ρ

ρ−1�
j=0

q �(i,t∗−ρv+jv+k)
ξ j

,∀k = 0, 1, . . . , v − 1, where

ξ j =
v−1�
k=0

q �(i,t∗−ρv+ jv+k)
v ,∀ j = 0, . . . , ρ − 1 is the average

electricity consumption in the j -th day from the period t∗−ρv.
The electricity consumption patterns on weekdays are usu-

ally different from that at weekends. Thus, to predict the
normal electricity consumptions on weekdays (at weekends),
the latest ρ weekday (weekend) electricity consumption data
are used.

V. THE SAI ALGORITHM

In this section, we first demonstrate the working strategy of
the Suspicion Assessment based Inspection (SAI) algorithm
and then explain how to implement it in real applications. We
assume that we have obtained all suspicions that users commit
electricity theft.

A. Working Strategy

We define a round of inspection as the inspection process
during which the users whose statuses are first unclear are

identified as being malicious or honest. In static cases where
no new malicious users appear, sub-inspectors conduct one
round of inspection. In dynamic cases where new malicious
users do appear, they usually conduct multiple rounds of
inspection. Let W denote the set of users whose statuses are
not clear. When the head inspector detects reading anomalies,
we initiate W = U and start the first round of inspection. The
notation U , as defined earlier, represents the set of all users
in the NAN. In the inspection process, W will be updated
constantly.

Intuitively, for the purpose of shortening detection time,
each round of inspection should start from the users with
the highest suspicions. Explicitly, we cannot say that the
users with highest suspicions are definitely malicious. On the
contrary, in the real world, some of these users may be actually
honest. This is mainly because many non-malicious factors
can cause users’ electricity consumptions to be much lower
than normal readings. For example, when users are traveling
out, they will obviously consume much less electricity. Thus,
sub-inspectors should conduct inspections on these users to
confirm whether they commit electricity theft or not. It is
reasonable to reckon that among the users with the highest
suspicions, there are more malicious users than honest users.
In this case, the individual inspection strategy which probes
users individually is efficient to identify malicious users.
Hence, we apply it to probe users with the highest suspicions,
as follows.

Let m denote the number of malicious users in the NAN.
Clearly, in the real world, we do not know the value of m in
advance. However, we can roughly estimate it as the average
number of malicious users identified in the past. Let m j denote
the number of malicious users that have been found out when
the head inspector detects reading anomalies at the j -th time,
with j being a positive integer. Let m̃ denote the estimated
value of m. Then, for the l-th time that the head inspector
detects reading anomalies, we estimate m̃ as

m̃ = 1

l

l−1�
j=0

m j . (3)

where m0 is previously set by the utility companies. For
example, the utility company may set it as m0 = 1%n, since it
was reported that 1% of users were stealing power in 1984 in
the USA [44].

After obtaining m̃, the sub-inspectors will individually probe
the m̃ users with the highest suspicions. For each inspection
step, we will first update suspicions that users in W commit
electricity theft. Then, the user with the highest suspicion is
probed. If the inspection result is dirty, this user is identified
as being malicious; otherwise, this user is honest. The above
process is concluded in lines 4 ∼ 13 in Algorithm 2. Now,
we take the example in Fig. 4 to illustrate the above process.
In Fig. 4, we assume that there are ten users in the NAN.
When the inspection starts, we initiate W = {1, 2, · · · , 10}.
We assume m̃ = 4. Then, the four users 1, 2, 3, 4 with
the highest suspicions are probed individually. Users 1, 2, 4
are identified as being malicious, whereas user 3 is identi-
fied as an honest user. At this time, the set W is updated
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Algorithm 2 The Suspicion Assessment Based Inspection
(SAI) Approach
Require: U = {1, 2, ..., n}
Ensure: M, H � the set of malicious and honest users,

respectively
Initialization: M ← ∅, H ← ∅, W ← U � Initialization
1: while the head inspector detects reading anomalies do
2: k ← 1; � start one round of inspection
3: while the head inspector detects reading anomalies do
4: if k ≤ m̃ then � individual inspection
5: Update suspicions for users in W ;
6: user i ← the user in W with the highest suspicion;
7: probe(user i );
8: if the inspection result is dirty then
9: M ← M ∪ {user i}, W ← W \ { user i};

10: else
11: H ← H ∪ {user i}, W ← W \ { user i};
12: end if
13: k ← k + 1;
14: else � binary tree based inspection
15: z ← build_bit(W );
16: Update node z.sta ← “dirty”; � skip the root

node
17: z ← next_node(z);
18: while node z do
19: probe(leaf(z));
20: if the inspection result is dirty then
21: Update node z.sta ← “dirty”;
22: if node z is a leaf then
23: M ← M ∪ leaf(z);W ← W \ leaf(z);
24: break;
25: else � node z is an internal node
26: z ← next_node(z);
27: end if
28: else � the inspection result is clean
29: H ← H ∪ leaf(z);W ← W \ lea f (z);
30: Update node z.sta ← “clean”
31: if node z.par.sta is “dirty” then
32: z ← z.sib;
33: Perform inspections by lines 21 ∼ 27;
34: end if
35: end if
36: end while
37: end if
38: end while
39: W ← H ; H ← ∅; � End one round of inspection
40: end while

41: procedure BUILD_BIT((W ))
42: Update suspicions that users in W commit electricity

theft;
43: Create a set of leaf nodes, Z , to represent the users in

W ;
44: while |Z | > 1 do � Build a BIT
45: Allocate a new node z0;
46: z0.lch ← z1 ← extractMin (Z);
47: z0.rch ← z2 ← extractMin (Z);
48: z1.sib← z2, z2.sib← z1;
49: z0.sp← z1.sp + z2.sp, z0.sta ← null;
50: Z ← Z ∪ {z0};
51: end while
52: Return z ← the unique node remaining in set Z ;
53: end procedure

54: procedure NEXT_NODE((z))
55: if aver_susp(z.lch) ≥ aver_susp(z.rch) then
56: Return node z ← node z.lch;
57: else
58: Return node z ← node z.rch;
59: end if
60: end procedure

Fig. 4. An example to illustrate the SAI algorithm. The symbols � and
X represent a clean inspection and a dirty inspection, respectively. For the
convenience of illustration, we assume that users’ suspicions do not change
during the inspection course.

as {5, 6, · · · 10}. Note that in Fig. 4, for the convenience of
illustration, we assume that users’ suspicions do not change
during the inspection course.

Since the account of users who are identified as being
malicious will be immediately disconnected, they can be
regarded no longer being monitored by the head inspector.
Thus, during the inspection course, if the head inspector stops
detecting reading anomalies, we can know that all malicious
users have been located. In other words, if there are any users
still remaining in set W , all of them are honest. At this time,
the inspection process can be ceased immediately.

For the purpose of demonstrating the complete SAI algo-
rithm, in the following context, we assume that after the
individual inspection process, there are malicious users still
remaining in W . It happens a lot in the real application, mainly
due to the following two factors: (1) the estimate of the number
of malicious users is less than itself, i.e., m̃ < m; (2) users with
low suspicions may also be malicious. For example, a user who
consumes much more electricity for holding a party is likely
to report normal readings to utility companies. In this case,
the suspicion is low, but this user actually steals electricity.
Among the users with low suspicions, there should be more
honest users than malicious users. As indicated in paper [16],
when the ratio of malicious users is small, the binary tree can
be applied as a logical structure to facilitate and accelerate
the inspection process. This inspires us to apply a binary tree
based inspection strategy on the remaining users in W .

We next demonstrate how to establish the particular binary
tree. After updating the suspicions that the remaining users
in W commit electricity theft, the binary tree is built in line
with the refreshed suspicions. The building process is stated
as follows.

(1) First, we create a set of leaf nodes, which is denoted
by Z , to represent the users in W . For any leaf node
z ∈ Z , it has four attributes: suspicion, left child, right child,
and parent, which are denoted as z.sp, z.lch, z.rch, z.par ,
respectively. For any leaf node z, its left child, right child and
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parent will be initiated as empty; and its suspicion will be set
as the suspicion value of the corresponding user.

(2) Then, we repeat merging two nodes in set Z which
have the lowest suspicions. Specifically, we will first allocate
a new node z0. We denote the two nodes by z1, z2 which have
the lowest suspicions in set Z . These two nodes are extracted
from set Z and then assigned as the left and right children of
the new node z0, respectively. The suspicion value of the new
node z0 is set as the summation of the suspicion values of
nodes z1 and z2. Technically, we have z0.sp = z1.sp+ z2.sp.
We then add the new node z0 into set Z . At this time, the set
Z is updated as Z = Z \ {z1, z2} ∪ {z0}.

Obviously, after such a merging process, the number of
nodes in Z will be reduced by one. Thus, after it is repeated for
|Z |−1 times, there will be only one node in set Z . This unique
node is exactly the root of the binary tree. Obviously, on this
binary tree, the users with larger suspicions have shorter
distances from the root. The above process is summarized as
the BUILD_BIT procedure in lines 41 ∼ 53 in Algorithm 2,
where the function extract Min (Z) extracts the node with the
largest suspicion from set Z .

We now take Fig. 4 as an example to illustrate how we build
the BIT. As shown, for the users remaining in W , i.e., users
{5, 6, · · · 10}, we build a binary tree. Since users 9, 10 have
the same lowest suspicion, i.e., 0.1, the leaf nodes representing
them are merged into the internal node e whose suspicion is
set as 0.2. Then, node e and the leaf node representing user
8 have the lowest suspicions. Thus, they are merged into the
internal node d whose suspicion value is set as 0.41. Next,
the two leaf nodes representing users 6, 7 are merged into
the internal node b whose suspicion is set as 0.44. With two
more merging operations, node c and the root node a are
subsequently created. The established BIT is shown in Fig. 4.

After the BIT is built, we will apply it as a logical
structure to facilitate the inspection process. For convenience
of illustration, for all nodes on the BIT, we now assign them
two more attributes: (1) sibling node. For any given node z,
it is notated as z.sib. Specifically speaking, if node z is a left
child, it has a right sibling node; otherwise, it has a left sibling
node. (2) status. For any given node z, it is notated as z.sta.
Each node represents one possible inspection step. Let leaf(z)
return the set of users on the subtree of node z. Obviously,
if the inspection result on node z is dirty, there are malicious
users in leaf(z). In this case, we set z.sta as being malicious.
Otherwise, if the inspection result on node z is clean, there
are malicious users in leaf(z). In this case, we set z.sta as
being clean.

Since it’s known that there are still malicious users remain-
ing in W , we can skip the inspection step on the root node and
directly set its status as being malicious. The sub-inspectors
will conduct the next inspection step on the child node which
has a larger average suspicion. Specifically speaking, assume
that the status of node z is dirty. Then, the sub-inspectors will
conduct the next inspection step on node z.lch if we have
aver_susp(z.lch) ≥ aver_susp(z.rch), where aver_susp(z)
returns the average value of the suspicions of all the users in
leaf(z). Otherwise, if aver_susp(z.lch) < aver_susp(z.rch),

the next inspection step will be performed on node z.rch.
We conclude the above process as the procedure NEXT_NODE

in lines 54 ∼ 60 in Algorithm 2.
Let H denote the honest user set. During the inspection

process, if node z is probed as being clean, we can know that
the users in set leaf(z) are honest. In this case, we will add
these users into set H and remove them from set W . The status
of node z will also be updated as being clean. In this case,
if the status of node z’s parent is dirty, we can infer that there
are malicious users on the subtree of node z’s sibling node.
This means that the status of node z’s sibling node must be
dirty. We then focus on the inspection process on the subtree
of this sibling node.

We next consider the cases where node z is probed as
being malicious. If node z is an internal node, we only know
that there is at least one malicious user on node z’s subtree.
In this case, more inspections will be further conducted on it.
If node z is a leaf, the user represented by it is apparently
malicious. Let M denote the malicious user set. This user will
be added into set M , but removed from set W . At this time,
we end the current binary tree based inspection process. If the
head inspector still detects reading anomalies, We will build
a new binary tree for the users remaining in W , based upon
the refreshed suspicions. A new binary tree based inspection
process will then be started.

We now take the example in Fig. 4 to illustrate the
above process. As shown in Fig. 4, due to aver_susp(b) >
aver_susp(c), the sub-inspectors first conduct inspection step
on node b. As shown, the inspection result is clean. Since
the status of node a (i.e., the parent of node b ) is dirty,
we can infer that node c must be dirty. We then focus on
the inspection on node c’s subtree. Due to aver_susp(d) =
0.137 < 0.25, the leaf node representing user 5 is probed
next. Since the inspection result is also clean, we can refer
that there are malicious users on node d’s subtree. Due to
aver_susp(e) = 0.1 < 0.21, the leaf node representing user 8
is probed next. With one more inspection step on the leaf node
representing user 10, the sub-inspectors identify user 10 as
being malicious. After the account of user 10 is disconnected,
the head inspector stops detecting reading anomalies. Thus,
we know all malicious users have been located.

Now let’s consider the following dynamic cases: after all the
users in W are identified as being either malicious or honest,
the head inspector can still detects reading anomalies. This
implies that new malicious users appear among the users
who have already been identified as being malicious. Because
the users identified as being malicious are disconnected
from the service of electricity, we do not need to consider
them in the new rounds of inspections. To locate the new
malicious users, the sub-inspector will incur a new round of
inspection among the users in set H .

We conclude the above strategies in Algorithm 2, which is
termed as the Suspicion Assessment based Inspection (SAI)
approach. According to the SAI algorithm, the users with high
suspicions will be first probed individually. After this process,
the users with low suspicions will be probed by a binary tree
based inspection strategy.
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B. Implementation

In this subsection, we explain how our method can be
implemented in an NAN of a smart grid system in two aspects:
1) algorithm and 2) hardware configuration.

1) Algorithm: to implement the SAI algorithm, the most
important thing is to assess users’ suspicions that they steal
electricity. It is achieved by assessing users’ prior records
in line with existing criminology knowledge as well as by
comparing users’ reported readings with their predicted nor-
mal readings, as shown in Equation (2). To a large extent,
prior records and consumption deviations represent users’ past
behaviors and current behaviors, respectively. As aforemen-
tioned, once a user is identified as being malicious, utility
companies note down the time period when this user is caught
stealing electricity. This is how we obtain users’ prior records.
For a newly established NAN where all the users’ prior
records are empty, users’ suspicions are only determined by the
consumption deviation. Since smart meters are spontaneously
generating data, by applying Holt-Winters method on data
generated during periods when the head inspector does not
detect reading anomalies, we can always obtain the predicted
normal readings and then the consumption deviation. Another
important aspect to implement the SAI algorithm is to esti-
mate the number of malicious users in the NAN, i.e., m̃.
This is because the value of 
m determines when we should
change the inspection strategy from individual inspection to
binary tree based inspection, as shown in Fig. 4. m̃ can be
approximately estimated as the average number of malicious
users identified in the past when the head inspector detected
reading anomalies. Specifically, it can be determined according
to Equation (3).

2) Hardware Configuration: We did not change the topol-
ogy of power line. We just installed an inspector box [16] at
some places (e.g., on an electric pole or at a distribution room)
in the NAN. An exemplary installation case of smart meters
and an inspector box is shown in Fig. 5(a), which is drawn
based upon a real photo of an apartment complex in Berkeley
in [51]. As shown in Fig. 5(a), an array of thirty-six smart
meters are mounted together on a wall. The array is arranged
in four rows, each containing nine meters. To the right side of
users’ smart meters, a meter-like device is installed which can
be regarded as an inspector box in the paper. Apparently, for
getting electricity, users’ smart meters can be connected with
the inspector box individually. Furthermore, we observed that
in many apartment buildings in USA, tenants’ smart meters
are installed together at some place near the apartments, with
each meter connecting one individual apartment. Therefore,
it is more than feasible to install an inspector box (working
as a distribution automation device) near the place where the
smart meters are installed.

To sum up, our model agrees with the topology of distribu-
tion network in a real power system. For better understanding,
we draw Fig. 5(b) based upon a figure in [40] which depicts
one typical (radial) distribution system. As shown in Fig. 5(b),
in some rural areas, users are connected as a star network,
i.e., in the way that we described in Fig. 1. In these cases,
we can install the inspector box at the places like point A

Fig. 5. Illustration of how to apply our schemes in real world.
(a) An exemplary installation case of smart meters and the inspector box.
(b) Locations to install the inspector boxes. (c) A possible block diagram of
the inspector box.

in Fig. 5(b). In the city areas in which buildings usually
consist of multiple apartments (as described in Fig. 5(a),
we can install an inspector box at some places near the
corresponding buildings. Fig. 5(a) also shows places where
the state estimation approaches work.

As aforementioned, the inspector box contains one head
inspector and at least one sub-inspector. The inspectors are
essentially function-enhanced smart meters with stronger com-
putation capability and larger storage space. The inspectors
measure the total amount of electricity distributed to the users
monitored by them. Head inspectors which monitor all the
users in the NAN have already existed (maybe called different
names, e.g., central observer meter, collector, substation level
meter, etc.) and are widely deployed in the power systems,
as indicated in the papers [18], [47], [48]. Different from the
above papers, we have sub-inspectors in our paper which are
functionally-identical with the head inspector. As explained
in paper [16], the inspector box is able to automatically
assign any user combination with any number to one sub-
inspector, without interfering with any normal electricity
services (i.e., without incurring power outages). The above

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on January 21,2022 at 19:15:24 UTC from IEEE Xplore.  Restrictions apply. 



XIA et al.: SAI ALGORITHM TO DETECT MALICIOUS USERS IN SMART GRID 371

function can be achieved by carefully designing electrical
circuits which connect the sub-inspectors.

We next demonstrate how an inspector box achieves the
goal of assigning different groups of users to the sub-inspector
without interrupting users’ normal electricity consumptions.
A possible (but not optimized) block diagram of an inspec-
tor box is shown in Fig. 5(c) in which the sub-inspector
consists of multiple current sensor modules (CSMs), each
being connected to a smart meter with an individual power
line for measuring the smart meter’s current. We expect that
CSMs output digital signals such that these signals can be
conveniently controlled in the microcontroller unit (MCU) of
the head inspector. Otherwise, if a CSM outputs analog signals
(e.g., ACS712 hall effect current sensors [52]), an analog-to-
digital converter can be further employed. Specifically, if at a
certain inspection step, the sub-inspector is signaled to inspect
a group of users denoted by G, then the digital outputs of the
CSMs connected to users in U \ G are cancelled by setting
them as zeros. Since residential electricity voltage in a certain
country remains a standard value (e.g., 120V and 220V in
USA and China, respectively), the MCU can easily calculate
electricity consumptions of users in G using the unconcealed
currents and the standard voltage. In other words, the sub-
inspector measures only the electricity consumptions of the
users in G effectively. Note that the head inspector also has a
measure unit and a display unit. The measure unit measures
the total electricity consumption of all users in the NAN.

VI. EXPERIMENT RESULTS

This section reports experiment results. The experiments
are conducted in Python 2.7.13 on an integrated development
environment - the PyCharm Community Edition 2017.1.3.
Users’ actual electricity consumptions are generated based on
the individual household electric power consumption data set
in [45]. The data are measurements of electric power con-
sumption in one household with a one-minute sampling rate
over a period of almost four years. In the experiments, we set
the reporting periods of users’ smart meters as 15 minutes.
Different users’ actual electricity consumptions are propor-
tional to the recorded individual household power consumption
in [45], with the corresponding coefficients being randomly
generated which distribute in the interval [0, 2]. The honest
users report their electricity consumption genuinely. With
regard to the malicious users, we assume the relationships
between the actual and the reported electricity consumptions
follow one as below: (1) q � (i, t) = q (i, t)− c0; (2) q � (i, t) =
(1− c1) q (i, t); and (3) q � (i, t) = c2, where the constants c0,
c1, c2 satisfy c0 > 0 , 0 < c1 < 1 , c2 < q (i, t) ,∀t � 1.
Note that the constants c1, c2, and c3 maintain fixed for all
simulation periods.

For users without prior records, the total number of elec-
tricity thefts is set |R(i, t∗)| = 0; and the time interval since
the last electricity theft is set as y(i, t∗) = 1000 months.
For users with prior records, |R(i, t∗)| is randomly chosen
between 1 and 10; and y(i, t∗) is randomly chosen between
0 and 80 months. Let us define the random variable Xi

by Xi = 1 if user i commits electricity theft at period t∗

Fig. 6. Results under different prior record ratios. The inspection ratio is
defined as the ratio between the number of inspection steps to the number of
malicious users located.

(where t∗, as defined earlier, is the period when the head
inspector detects reading anomalies) and by Xi = 0 if user
i does not. We assume that the random variable Xi follows
the Bernoulli distribution [46] as below:⎧⎪⎪⎨⎪⎪⎩

Pr(Xi = 1)

= 1

2.5+ 7.5 exp(0.8|R(i, t∗)| − 0.2y(i, t∗))
+ 0.05,

Pr(Xi = 0) = 1− Pr(Xi = 1).

We assume this Bernoulli distribution because it is con-
sistent with the criminology knowledge that the recidivism
risk increases monotonically with the total number of prior
criminal records and decreases monotonically with the time
interval since the last criminal act. Note that the criminal act
in our case is electricity theft.

In the experiments, for the parameters in Equation (1),
we set a = 1.25, b = 3.75, w = 0.8 and c(t) = 0.1. For
the parameters in Equation (2), we set u = 0.4 and g = 3.
For the initial value m0 in Equation (3), we set it as 10% of
the total number of users in the NAN. Note that each piece
of data in the following figures is averaged over 30 times of
repeated experiments.

In Fig. 6, we define the prior record ratio as the ratio
of the number of users with prior records to the number
of all the users in the NAN. We explore how prior record
ratios influence the performance of the SAI algorithm. For this
purpose, we introduce a new metric4, i.e., the inspection ratio,
which is defined as the ratio between the number of inspection
steps to the number of malicious users located. Obviously,
in practice, a smaller inspection ratio implies a more effective
inspection algorithm. As can be observed, on the whole,
inspection ratios will be smaller when prior record ratios are
larger. This demonstrate that the prior records do help us
narrow down the searching area to a large extent, although
the influence gets smaller during the inspection course.

In the following figures, we assume the prior record ratio
as 50%.

In Fig. 7, we assume there are a total number of 250 users
in the NAN. We present the first 30 experiment results.
In Fig. 7, both the number of malicious users identified
and the number of inspection steps performed by the sub-
inspectors are involved. As we can see, when the number of
malicious users gets larger, the number of inspection steps gets

4We here do not use the metric of the number of inspection steps as
in papers [16], [17]. This is because the malicious users in this paper are
generated based on a Bernoulli distribution. It implies that for a given
total number of users in the NAN, the number of malicious users being
generated/located may be different in several experiments.
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Fig. 7. Results of the first 30 experiments under the case n = 250.

Fig. 8. Results under different malicious user ratios. The malicious user ratio
is defined as the ratio of the number of malicious users to the number of all
the users in the NAN.

larger correspondingly. Specially, if the number of malicious
users increases suddenly, the number of inspection steps will
accordingly reach a peak. This is because in these cases, more
malicious users will be located through applying the binary
tree based inspection strategy, which usually takes several
inspection steps to locate a malicious user.

In Fig. 8, we display the experiment results when the
malicious user ratio is 0.08, 0.10, 0.12, respectively. Note
that the malicious user ratio is defined as the ratio of the
number of malicious users to the number of all the users
in the NAN. We investigate how the number of inspection
steps varies under different malicious user ratios. As we
can see, for any given total number of users in the NAN,
sub-inspectors perform the fewest inspection steps under the
smallest malicious user ratio. When the ratio of malicious
users is larger than 10%, the number of inspection steps has
a tendency to increase. This is because we have set the initial
value of the threshold as 10% of the total number of malicious
users. When the total number of malicious users increases,
more inspection steps will be performed during the binary
tree based inspection process.

In Fig. 9, we explore the performance of the SAI algorithm
in dynamic cases, in terms of the number of inspection steps.
We show the results of the experiments where the ratio of
malicious users is 0.1. We consider the cases where the number
of new malicious users is 5, 10 and 15, respectively. For
comparison purposes, we also display the results of static
cases, where the number of new malicious users is 0. As can
be observed in Fig. 9, on the whole, for a given total number
of users in the NAN, when the number of new malicious users
is larger, the number of inspection steps will accordingly get
larger.

In Fig. 10, we compare the SAI algorithm with the ATI
algorithm [16] as well as the DCI algorithm [17] in static
cases.5 We assume that there are a total number of 250 users

5Since the inspection process in dynamic cases can be regarded as a repeated
inspection process in static cases, the tendency of curves in dynamic cases is
similar.

Fig. 9. Results under dynamic cases.

Fig. 10. Results of SAI vs. ATI under the case n = 250.

Fig. 11. SAI vs. BCGI: (a) inspection ratio; (b) number of inspectors.

in the NAN. In the real world, there will be few malicious
users who start committing electricity theft simultaneously,
i.e., at the same period t∗. Furthermore, it is pointed out
in paper [16] that the ATI algorithm has better performance
when the ratio of malicious users is small. Thus, in Fig. 10,
we consider the number of malicious users varying from
12 to 30. As can be seen, the SAI algorithm obviously
outperforms both the ATI algorithm and the DCI algorithm
in terms of inspection steps. With the increase of malicious
user number, the performance gap between the SAI algorithm
and the DCI algorithm becomes smaller. Besides, under the
condition that smart meters report users’ electricity consump-
tions every 15 minutes, the investigation procedures of the SAI
algorithm usually take hours. As shown in Fig. 10, for locating
13 malicious users from a total number of 250 users, the SAI
algorithm takes about 15 inspection steps. This indicates
that the inspection process lasts for less than four hours.
With the number of malicious users increasing, the inspection
process prolongs. As shown in the figure, when the number
of malicious users reaches 30, by the SAI algorithm the sub-
inspector takes approximately 60 inspection steps, which lasts
for about 15 hours. However, we do not expect that we have
so many malicious users in reality.

In Fig. 11, we compare the performance of the SAI algo-
rithm with the BCGI algorithm, in terms of inspection ratio.
As pointed out earlier, a smaller inspection ratio implies a
more effective inspection algorithm. From Fig. 11(a), we can
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observe that the BCGI is more effective than the SAI algorithm
in locating malicious users. However, we cannot neglect the
fact that the SAI algorithm needs only two inspectors - the
head inspector and a sub-inspector, while the BCGI algo-
rithm requires many more inspectors, as shown in Fig. 11(b).
Furthermore, the application of the BCGI algorithm is very
limited. More specifically, it can only be applied when there
is only one malicious user in the NAN.

VII. CONCLUSION

This paper investigates the MMI problem which aims
to detect the malicious users within the shortest detection
time using a limited number of inspectors. Before inspec-
tors conduct inspections, we assess users’ suspicions to steal
electricity: (1) Considering that electricity theft is a particular
form of economic crime, we assess users’ recidivism risks
through analyzing electricity theft prior records; (2) We assess
users’ deviation risks based upon deviations between reported
and predicted normal readings; (3) The suspicions are com-
prehensively assessed as a weighted value of recidivism risks
and deviation risks. Note that with the inspection process
going on, the deviation risks weigh more and more. On the
basis of the suspicions, we further propose the SAI algorithm.
According to it, the users with the highest suspicions will be
individually inspected earlier. After this process, the remaining
users will be inspected by a binary tree based inspection
strategy. Experiment results show that the SAI algorithm
outperforms both the ATI algorithm and the DCI algorithm
in terms of the number of inspection steps. Although the SAI
algorithm is less effective to locate malicious users than the
BCGI algorithm, it has much wider application.
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