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ABSTRACT
Data aggregation protocols are essential for wireless sensor networks to prolong network lifetime by reducing energy consump-
tion of sensor nodes. For mission-critical wireless sensor networks, however, not only the energy consumption of sensor nodes
but also the correctness of the data aggregation results is critical. As wireless sensor networks are usually deployed in harsh and
hostile environments, malfunctioning and/or compromised sensor nodes negatively affect the correctness of the data aggrega-
tion results. This paper presents a fault-tolerant data aggregation scheme that eliminates the false data sent by malfunctioning
and/or compromised sensor nodes. To conserve energy while eliminating false data, an in-network outlier detection technique
that is based on locality sensitive hashing scheme is used. The simulation results show that the proposed scheme is able to
reduce the number of false data transmissions, thereby increasing the data aggregation accuracy. Moreover, it is also observed
that the proposed scheme reduces the overall data transmission in the network. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recent advances in wireless communications accelerated
the deployment of wireless sensor networks (WSNs) that
typically consist of a large number of small, low-cost sensor
nodes distributed over a large area with a powerful sink
node that collects and analyzes readings of sensor nodes.
Sensor nodes rely on small batteries and usually capable of
measuring physical phenomena such as temperature, sound,
vibration, and pressure. In many cases, WSNs are employed
to gather data from a hostile or unattended area that makes
sensor node battery replacement too expensive or even
impossible [1]. Hence, a WSNmust perform the data gather-
ing task in an energy-efficient manner so that its lifetime is
prolonged. Data aggregation is implemented in WSNs to
eliminate data redundancy, reduce data transmission, and
improve data accuracy. It is shown that data aggregation
results in better bandwidth and battery utilization [2,3],
which enhances the network lifetime because communica-
tion constitutes 70% of the total energy consumption of the
network [4]. In WSNs, data aggregation is performed by
sensor nodes, called data aggregators. Data aggregators are
responsible not only for collecting and summarizing data
but also for in-network analysis of the collected data, and
trigger alarms on the basis of this analysis [1].
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In addition to energy-efficient data gathering requirement,
majority of WSN applications require real-time data mining
of sensor data to promptly make intelligent decisions [5];
hence, identifying outliers is an important challenge for
monitoring, fault diagnosis, and intrusion detection in
WSNs. In data mining domain, outliers are “events with
extremely small probability of occurrence” [6]. In WSN
domain, however, outliers are defined as “measurements that
significantly deviate from the normal pattern of sensed
data” [7]. The difference between these two outlier defini-
tions comes from the fact that the unique properties of WSNs
make them especially prone to outliers. As summarized in
Figure 1, these properties can be listed as follows: (i) WSNs
are usually employed by mission-critical security and
military applications, which are attractive for security
attacks. (ii) The sensing performance of sensor nodes deteri-
orate as their power is exhausted. In addition, because of
low-cost requirement, sensor nodes are equippedwith imper-
fect sensing devices. (iii) Sensor networks are deployed in
harsh environments; it is expected that some sensor nodes
may malfunction. The aforementioned properties of WSNs
lead to generation of false/faulty sensor data. False data
negatively influence the quality of aggregated data, which
is used for in-network decision-making process. Because
WSNs are usually employed to monitor the physical world
Copyright © 2012 John Wiley & Sons, Ltd.
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Figure 1. Outlier sources in WSNs.
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phenomena such as forest fire or earthquake, a phenomenon
that is not accurately detected may be catastrophic. It is clear
from the aforementioned discussion that outlier detection
mechanisms must be implemented in WSNs so that data
aggregators, that is, decision makers, can correctly trigger
alarms. However, outlier detection process is a memory-
consuming and communication-consuming task by its nature
[8]. In distributed and resource-constrained environments,
such as WSNs, identifying outliers without increasing the
communication overhead is a challenging task. Moreover,
sensor nodes suffer from the severely limited memory
capabilities. Therefore, in WSNs, in-network outlier detec-
tion approaches that reduce communication and memory
consumption of sensor nodes must be employed. In this
paper, we propose a fault-tolerant data aggregation scheme
using an in-network outlier detection mechanism, called
FTDA. The outlier detection mechanism is based on the
locality sensitive hashing (LSH) technique [9]. The LSH
algorithm used in FTDA allows compact representation of
sensor data, which reduces the communication overhead of
outlier detection. FTDA takes advantage of LSH technique
by estimating the similarity of sensor data from their compact
sketches (LSH codes). In FTDA, each sensor node initially
encodes its latest m data readings to an LSH code of size b.
With the assumption that each data reading is n bits, b is
much smaller than (m� n) bits. These LSH codes are sent
to the data aggregator. To find out the local outlier nodes,
the data aggregator compares the similarity between each
LSH code pair. Then, the data aggregator communicates with
the neighboring data aggregators to discover if its local
outliers are affected from the phenomena occurred in the
neighboring regions. The data aggregator does not include
the faulty data of outliers to data aggregation process and
computes the aggregated data. In addition, while detecting
outliers, the data aggregator also discovers the sensor nodes
that have the exact same LSH codes (i.e., sensor nodes that
have the same data) and prevents redundant data transmis-
sion from these sensors. Elimination of redundant data
transmission improves the bandwidth and energy efficiency
of FTDA. The details of the outlier detection and LSH
schemes are given in the subsequent sections of the paper.

Our contribution in this paper is twofold. First, we
propose a novel FTDA scheme using an in-network outlier
detection mechanism based on LSH technique.With the help
of LSH technique, FTDA protocol is able to detect outliers in
a distributed and energy-efficient manner. Second, using
LSH codes, FTDA protocol eliminates the redundant data
Security Comm. Networks 2013; 6:702–710 © 2012 John Wiley & Sons, Ltd.
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transmission from sensor nodes to data aggregators thereby
incrementing the efficiency of data aggregation process.
Performance analysis and simulation results show that
FTDA protocol increases the accuracy of aggregated data
and reduces the amount of data transmission in the network.
The rest of the paper is organized as follows. In Section 2,
the related work in data aggregation and outlier detection
in WSN domain is presented. Section 3 explains the
system model. Section 4 explains the proposed protocol in
detail. Performance analysis and simulation results are
presented in Section 5. Finally, concluding remarks are
made in Section 6.
2. RELATED WORK

In WSN domain, secure data aggregation problem is studied
extensively [10–16]. In [10], a security mechanism that
detects node misbehaviors such as dropping or forging
messages and transmitting false data is presented. In [11],
random sampling mechanisms and interactive proofs are
used to check the correctness of the aggregated data at base
station. In [12], sensor nodes first send data aggregators the
characteristics of their data to determine which sensor nodes
have distinct data, and then, those sensor nodes having
distinct data transmit their encrypted data. In [13], the
witness nodes of data aggregators also aggregate data and
compute message authentication codes to help verify the cor-
rectness of the aggregators’ data at the base station. In [14],
sensor nodes use the cryptographic algorithms only when a
cheating activity is detected. Authors of [15] proposed that,
compared with low-level sensor nodes, more trust is placed
on the high-level nodes (i.e., nodes closer to the root) during
a normal hop-by-hop aggregation process in a tree topology.
In [16], a protocol that makes use of a web of trust to over-
come the shortcomings of cryptography-based secure data
aggregation solutions is proposed.

Outlier detection in WSNs is another attractive research
area for researchers. The authors of [17] introduced a frame-
work for cleaning and querying noisy sensors. The authors
presented an in-network Bayesian approach to reduce the
uncertainty of the data due to random noise. To obtain a
better estimation of the sensor node readings, the authors
combined the prior knowledge of the real sensor reading,
the noise characteristics of the sensor node, and the observed
noisy reading. The authors proposed several algorithms
based on the introduced uncertainty models and evaluate
703
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the proposed algorithms. A comprehensive survey of outlier
detection techniques is presented in [8]. To detect outliers
in WSNs, the authors of [18] investigated the augmentation
of sensor network queries by statistical models. The authors
argued that a statistical model may offer a more reliable
way to gain insight into the physical phenomena observed.
Using statistical models, the authors propose an approach
to detect outliers in streaming sensor data. The authors of
[19] proposed a histogram-based method to detect outliers
in a communication efficient manner. A declarative data
cleaning mechanism over sensor node data streams is
introduced in [20]. A fuzzy logic-based approach is proposed
in [21] to infer the correlation among measurements from
different sensors. The proposed technique assigns a
confidence value to each measurement and then performs
an aggregated weighted average scheme. The authors of
[22] proposed a technique based on a weighted moving
average that takes into account both recent local samples
and corresponding values by neighboring sensor nodes to
estimate actual sensor readings. Localized voting protocols
are used in [23] and [24] to identify the faulty sensors.
However, the authors of [25] have shown that localized
voting schemes are prone to errors if there is no direct
communication among sensor nodes that produce the faulty
data. In [26], an outlier detection method for real-time events
in WSNs is proposed. The proposed method trains and tests
the data in real time and has shown to be effective. In [27], an
outlier detection protocol that is based on time-series analysis
and geostatistics is proposed. The authors presented that
the proposed protocol accurately detected outliers in WSN
data, taking advantage of their spatial and temporal
correlations. In [28], outlier detection techniques for WSN
localization problems are investigated, and an outlier
detection scheme to cope with noisy sensor data is proposed.
In [29], a directional-controlled fusion (DCF) scheme is
proposed. The proposed scheme consists of two key
algorithms namely directional control and multipath fusion.
In order to satisfy specific quality-of-service requirements
from various applications, the authors alter the multipath
fusion factor in DCF. Simulation results show that the
proposed scheme is efficient. In [7] and [30], extensive
surveys on outlier detection in WSNs are presented.

The LSH technique was initially introduced to provide
solutions to theMAX-CUT problem [31], and then, it is used
for several purposes in the literature such as similarity
estimation and clustering. Different from the existing
work, in this paper, we employ a novel and energy-efficient
LSH-based outlier detection scheme to improve the accuracy
and efficiency of the data aggregation process.
3. SYSTEM MODEL AND
PRELIMINARIES

We consider a large sensor network with densely deployed
sensor nodes that are assigned unique identification
numbers. Because of the dense deployment, sensor
nodes have overlapping sensing regions and events are
704 Sec
detected by multiple sensor nodes, thereby requiring data
aggregation to reduce the amount of data transmission.
Sensor nodes have limited computation and communication
capabilities, whereas the base station is assumed to have no
computation and communication constraints. The network
is divided into clusters, and each cluster has a dynamically
selected data aggregator node. The details of cluster forming
and data aggregator selection processes are out of scope of
this paper. Data are periodically collected and aggregated in
data aggregation sessions. The data aggregator sends
aggregated data to the base station over multihop paths. We
assume that each data aggregator aggregates its cluster data
only and hierarchical data aggregation is not allowed.
However, it should be noted that FTDA protocol can be used
for hierarchical data aggregation as well.

3.1. Outlier definition

Defining outliers according to the latest reading of sensor
nodes is shown to be a simple but unreliable technique
[25]. FTDA detects outliers based on the last m data
readings of sensor nodes. To define outliers, let us first
show how to measure the similarity between data of two
sensor nodes. Let vi be the set of the latest m readings
collected by sensor node Si. Also, let Y be a similarity
threshold for a similarity metric θ where θ :Rm! [0, 1].
Sensor nodes Si and Sj are similar if θ(vi, vj)>Y. With this
similarity definition, we define local outliers in a cluster
as follows.

Definition 1
(Local Outlier). Assume that Si and Sj belong to same
cluster. Sensor node Si is a local outlier if there are less
than minSuplocal sensor nodes Sj that satisfies θ(vi, vj)>Y
where minSuplocal is the minimum support value for
the cluster.

It is worth to note that a sensor node may be labeled as
a local outlier because of an event that occurred in the
neighboring cluster. For example, consider the fire monitor-
ing scenario given in Figure 2 where cluster A, B, and C form
a neighboring cluster group.When a fire started inside cluster
A, it is expected that the sensor nodes of cluster B that are
located close to cluster A detect the fire as well. Temperature
readings of such nodes deviate significantly from the
temperature readings of the other sensor nodes in cluster B.
As a result, data aggregator of cluster B labels these nodes
as local outliers. Hence, this process is not sufficient to
label a sensor node as outlier. Hence, the data aggregator
determines the outliers after communicating with its neigh-
boring data aggregators.

Definition 2
(Outlier). Assume that Si and Sj belong to a neighboring
cluster group. Sensor node Si is an outlier if there are less than
minSupgroup sensor nodes Sj that satisfy θ(vi, vj)>Y where
minSupgroup is the minimum support value for the neighboring
cluster group.
urity Comm. Networks 2013; 6:702–710 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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In FTDA, minimum support values minSuplocal and
minSupgroup are dynamic system parameters that depend on
the application and the collected data type. With the network
size and local node density, the base station dynamicallymay
alter minimum support values for different regions of the
network. This approach reduces the errors due to usage of
single minimum support value for outlier detection [32].

3.2. Distance and similarity metrics

To be able to measure the similarity between sensor node
data sets, we need a distancemetric. Let P denote a set of data
points and assume that P has cardinality n. The points p from
P belong to a d-dimensional spaceRd, and pi denotes the ith
coordinate of p, for i=1, . . ., d. In P, the distance between
any pair p and q is defined as

p� qk ks ¼
Xd
i¼1

pi � qij js
 !1=s

(1)

where s> 0. In general, s is taken as 2, and the distance
is called Euclidean Distance. In this paper, we use Euclidean
distance to compute the distance between sensor node
data sets.

Fault-tolerant data aggregation is independent from the
similarity metric; hence, any metric such as the cosine
similarity, the correlation coefficient or the Jaccard coefficient
can be used. FTDA employs cosine similarity, which can be
defined as follows:

cos θ vi; vj
� �� � ¼ vi�vj

vik k� vj
�� �� (2)

where vi and vj denote data vectors of sensor nodes Si and Sj.

3.3. Locality sensitive hashing

Considering Figure 3 where p and q are some data points in
Rd , the LSH algorithm can be explained as follows. If the
distance between p and q is less than R, then p is an R-near
neighbor of q. Basically, the LSH algorithm outputs if there
is an R-near neighbor for a data point or not; hence, the
LSH algorithm relies on the existence of locality sensitive
hash functions. LetH be a family of hash functions mapping
Security Comm. Networks 2013; 6:702–710 © 2012 John Wiley & Sons, Ltd.
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Rd to some universe U. Let us assume that there is a function
h in H. Furthermore, for points p and q, h(p) = h(q). Under
these assumptions, the family H is called locality sensitive
if it satisfies the following condition.

(Locality Sensitiveness). A hash function family H is
called locality sensitive if for any two points p; q 2 Rd .

• If ‖p� q‖≤R then PrH h qð Þ ¼ h pð Þ½ �≥P1,
• If ‖p� q‖≥ cR then PrH h qð Þ ¼ h pð Þ½ �≤P2,

where c is a constant, P1 ¼ 1� R
d , and P2 ¼ 1� cR

d . An
LSH family must satisfy P1>P2 [33]. This LSH family
can determine that if two data points are in the R-near neigh-
borhood of each other. In order to use LSH technique on
sensor node data sets, we need an LSH algorithm that can
work on vectors. In [9], a random hyperplane-based LSH
algorithm for vectors is proposed. For vectors u; v 2 Rd , let
us consider the cosine similarity metric that is the angle
between the two vectors, u; vð Þ ¼ arccos u�v

uk k� vk k
� �

, and
define the hash function hr as

hr uð Þ ¼ 1 if r � u≥ 0
0 if r � u < 0

�

then for vectors u and v

Pr hr uð Þ ¼ hr vð Þ½ � ¼ 1� θ u; vð Þ
p

(3)

θ u; vð Þ ¼ p � 1� Prð Þ (4)

This random hyperplane-based hash function can
measure the similarity between any pair of sets. However,
the hash function measures the similarity in terms of the
705
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angle between two vectors. Computation of an angle
between two vectors is not a trivial task for a resource-
constrained sensor node. Therefore, following the method
described in [34], we can rewrite the aforementioned
equation in terms of Hamming distance.

Dh LSHu; LSHvð Þ ¼ b� 1� Prð Þ (5)

where LSHu,LSHv2 [0, 1]b are the LSH codes of vectors
u and v, respectively, and Dh(LSHu,LSHv) is the Hamming
distance between LSHu and LSHv. Each LSH code is length
of b-bit, which is much smaller than original vectors
(i.e., data sets) u and v. Using Equation (4), we can rewrite
the aforementioned equation as follows:

Dh LSHu;LSHvð Þ ¼ b� θ u; vð Þ
p

(6)

The aforementioned formula enables sensor nodes to
measure the similarity of their data sets by simple bit compar-
isons. However, now, we need to express the similarity
threshold Y in terms of Hamming distance as well. Using
the Equation (6), we can write the similarity threshold as

YDh ¼ b�Y
p

(7)

The next section explains how sensor nodes useDh(LSHu,
LSHv) and YDh to detect outliers and redundant data.
Figure 4. Protocol FTDA.
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4. FTDA PROTOCOL

As shown in Figure 4, FTDA protocol consists of three
phases, namely (i) data collection and LSH code generation,
(ii) outlier detection and redundant data elimination, and
(iii) data aggregation. These three phases are periodically
realized in each cluster. In what follows, we explain each
phase in detail.

4.1. Phase 1. Data collection and LSH
code generation

In FTDA, data collection and aggregation is performed in
sessions. Data aggregators inform their cluster members at
the beginning of each data collection phase. In each data
collection session, each sensor node senses the environment
m times and stores the sensed values. Assuming that each
sensed value is n bits, each sensor node has a data vector of
size (m� n)-bit. Sending this (m� n)-bit data to the data
aggregator results in rapid exhaustion of a sensor node’s
battery. In order to reduce the amount of data transmission,
sensor nodes generate LSH codes of their data vectors. As
shown in the previous section, LSH codes can represent
sensor data using less number of bits. A sensor node applies
LSH algorithm to its data and obtain a b-bit LSH code where
b≪ (m� n). It is necessary to note that there is a trade-off
between the values of (m� n) and b in terms of outlier
detection probability. When (m� n) and b values are close
to each other, the outlier detection ability of the protocol
increases. Using Equation (2), we can compute the probability
P that LSH codes of data vectors u and v are equal. Hence, the
probability of a successful similarity test can be expressed by
the following cumulative function of a binomial distribution:

Psimilar ¼
XYDh

i¼0

b
i

� 	
Pb�i � 1� Pð Þi (8)

Figure 5 shows the probability of successfully detecting if
two LSH codes are similar for different b values. As shown
in the figure, increasing b also increases the probability of suc-
cessful detection.

4.2. Phase 2. Outlier detection and
redundant data elimination

Each data aggregator requests sensor nodes in its cluster
to send their LSH codes for the current data aggregation
session. Sensor nodes send their LSH codes along with
their unique sensor node IDs. Using Equations (6) and (7),
the data aggregator compares the LSH codes of any
sensor node pair. The data aggregator looks for the
following two cases:

Case 1. If there are LSH codes that are significantly
different from the rest of the LSH codes: Based on
the Hamming distance between pairs of LSH codes
and the similarity threshold YDh , the data aggregator
urity Comm. Networks 2013; 6:702–710 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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determines that the compared pair of LSH codes are
similar. If an LSH code is found to be similar with
another LSH code, then its support count is increased
by 1. The LSH codes that have a support count, which
is less than predetermined minSuplocal, are labeled as
local outliers. These local outliers, however, might be
affected by the events that occurred in the neighboring
clusters. Therefore, neighboring data aggregators
exchange their local outlier lists among them to
determine if these outliers can improve their support
count. Each data aggregator compares LSH codes of
its neighboring local outliers with its cluster’s LSH
codes and updates their support counts. Neighboring
data aggregators exchange the updated support counts
of local outliers. Data aggregators check the updated
support count of their local outliers, and they label
the local outliers that have a updated support count less
than minSupgroup as outliers.

Case 2. If there are LSH codes that are exactly the same:
During the comparison LSH code pairs, data aggre-
gators also find out the sensor nodes that sent exactly
the same LSH codes. In other words, data aggregators
discover the sensor nodes that have the same data. This
information is particularly useful to eliminate redundant
data transmission from sensor nodes to the data aggre-
gator. If there are more than one sensor nodes that have
the same LSH code, then the data aggregator selects
only one sensor node among them to send its actual
data, thereby reducing data transmission amount.

4.3. Phase 3. Data aggregation

At the end of the Phase 2, the data aggregator has the list of
outliers and the sensor nodes that have the same LSH codes.
With this information, the data aggregator decides the sensor
nodes that should send their actual data for data aggregation
as follows. The data aggregator first eliminates the outliers,
and then, it determines the sensor nodes that have distinct
LSH codes and request only one sensor node to send the
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Figure 5. The trade-off between probability Psimilar and number
of bits in LSH codes; (m=16, Y=10).
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actual data for each distinct LSH code. Only requested sensor
nodes send their data to the data aggregator, and the data
aggregator does not accept data from any other sensor nodes.
This process ensures that (i) no outlier data is included in the
aggregated data and (ii) there is no redundant data transmis-
sion from sensor nodes to the data aggregator. The data
aggregator aggregates received data and sends aggregated
data to the base station. It should be noted that if the data
aggregation requires the inclusion of redundant data (e.g.,
computing average), the data aggregator adds redundant data
during data aggregation.
5. PERFORMANCE EVALUATION

In this section, we evaluate FTDA in terms of outlier detec-
tion performance, data aggregation accuracy, and communi-
cation efficiency. FTDA is simulated using TinyOS 2.0
Simulator (TOSSIM) [35] in a scenariowhere a cluster-based
sensor network is deployed to monitor the temperature of a
terrain. Fifty sensor nodes are placed in uniformly distributed
random locations within a square area where the base station
is located on one corner. There are two clusters in the
network, and each cluster has a data aggregator node. Data
aggregators reach the base station over a single hop. A
retransmission mechanism is implemented, and the retrans-
mission limit is set to five. The default bit error rate is set
to 10%. Carrier sense multiple-access medium-access
scheme is used. The radio model is selected as the default
TinyOS 2.0 CC2420 stack, which has 4 bits per symbol
and 64K symbols per second, for 256Kbps. Each simulation
is run 20 times, and the results are averaged. The parameters
for LSH code generation is selected as follows: In each data
aggregation session, data set size of a sensor node is m=16,
whereas the size of LSH code is b=16bits. The size
of sensed data (n) is varied as 4, 8, 16, 24, and 32 bits. For
outlier detection minimum support values are set to
minSupportlocal = 3 and minSupportlocal = 4. We use a
synthetic data set in which sensor nodes generate false data
with a probability of up to 20%.
5.1. Outlier detection accuracy

We first evaluate the outlier detection accuracy of FTDA
using precision, recall, and F-measure metrics. Accuracy is
a simple metric that is computed as the fraction of instances
for which the correct result is returned; precision and recall
are extended versions of accuracy, and they are widely used
for evaluating the correctness classification algorithms [8].
Precision indicates the success of FTDA in labeling real
outliers (i.e., true positives), whereas recall indicates the
percentage of real or false outliers (i.e., true and false
positives) that are labeled by FTDA. With the use of Table I,
precision and recall values can be formulated as follows:

precision ¼ TP

TPþ FP
recall ¼ TP

TPþ FN
(9)
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Table I. Precision and recall.

Correct classification
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Figure 7. Accuracy of aggregated data for different injected
false data amounts.
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F-measure is the harmonic mean of precision and recall
and computed as follows:

F-measure ¼ 2� precision� recall
precisionþ recall

(10)

The simulations are performed for different data sizes (n)
and Y similarity threshold values. The size of data set is
m=16. By changing the data size, we trade FTDA’s outlier
detection probability to its communication efficiency.
Increasing the sensed data size decreases the outlier detection
probability and increases the communication efficiency
because of LSH codes. Similarly, higherY similarity angles
decreases the outlier detection probability. The results are
presented in Figure 6. Figure 6 shows that for all data size
and Y combinations FTDA is able to successfully detect
outliers with high precision, recall, and F-measure values.
Even for 32-bit data and Y=25, the lowest observed
precision, recall, and F-measure values are 0.75, 0.70, and
0.72, respectively. The results are in parallel with the analysis
given in Section 3. It should be noted that these results are
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Figure 6. Average (a) precision, (b) recall, and (c) F-measure values o
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obtained using LSH codes of size b=16; as shown in
Figure 5, outlier detection performance of FTDA can be
increased by using longer LSH codes.
5.2. Data aggregation accuracy

We evaluate the data aggregation accuracy of FTDA for
different Y similarity threshold values. The percentage of
false data sent by sensor nodes is also changed in the
simulation. The results are presented in Figure 7 where
the data aggregation accuracy of the network is defined
as [1�Error in the aggregation result]. The error in the
aggregation result is the difference between the aggregated
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f FTDA for different data sizes and similarity thresholds (m=16).
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Figure 8. Total data transmission of (a) TAG and (b) FTDA.
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data computed by the data aggregator and the aggregated
value of the data sent by the sensor nodes without any false
data. Hence, the data aggregation accuracy is affected by
the FTDA’s outlier detection performance. If FTDA
eliminates all the outliers in the network, then the data
aggregator does not receive any false data resulting in
100% correct data aggregation results. As seen from
Figure 7, the percentage of false data in the network
negatively affects the data aggregation accuracy of FTDA.
This is because, when the false data amount in the
networks increases, some of these false data can have
sufficient minSupport values and are not labeled as outlier.
As shown in the previous subsection, wider Y similarity
threshold angels reduce the outlier detection performance
of FTDA. Figure 7 also reflects this observation, the wider
Y results in reduced data aggregation accuracy as a result
of undetected outliers.

5.3. Communication efficiency

The communication efficiency of FTDA is also evaluated
under different data sizes and false data percentages. In
order to show how outlier detection affects the communi-
cation efficiency, FTDA is compared with a well-known
data aggregation protocol, called TAG [36]. TAG is a
simple and lightweight data aggregation protocol that does
not provide any security mechanism. In the simulations,
total data traffic from sensor nodes to the base station is
measured, and the results are presented in Figure 8. The
total data traffic includes all the data sent by data aggrega-
tors and sensor nodes. As seen from the figure, as a result
of outlier detection and elimination of redundant data,
FTDA outperforms TAG. As the amount of false data sent
by sensor nodes increases, the communication efficiency of
FTDA increases as well, whereas TAG’s communication
efficiency is not affected. This shows that FTDA does
not allow transmission of false data to the data aggregator,
whereas data aggregators accept all sensor data in TAG.
Increasing measured data size negatively affects both
FTDA and TAG. However, as Figure 8 shows FTDA is
affected less than TAG because of eliminating false and
redundant data due to elimination of exact same data at
data aggregators.
Security Comm. Networks 2013; 6:702–710 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
6. CONCLUSION

This paper presents an FTDA scheme that eliminates the false
data sent by malfunctioning and/or compromised sensor
nodes. To prolong the lifetime of the network by saving
energy, an LSH-based in-network outlier detection technique
is used. The simulation results show that the proposed
scheme, FTDA, is able to detect outliers in most cases. As a
result, FTDA reduces the number of false data transmissions
thereby increasing the data aggregation accuracy. Moreover,
it is also observed that if sensor data are highly correlated
FTDA can eliminate redundant data transmissions and reduce
the overall data transmission in the network.
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