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Abstract—A paramount factor limiting the applications of
binary sensors is these senors’ on-off property outputting
binary digits of “0” or “1”. To overcome this limitation, modu-
lators or obscurants are added to enhance the sensing ability
of binary sensors and render them usable in applications
such as multi-target tracking and human activity recognition.
Obscurants segment the field of interest into subregions and
distinguish each subregion by a list of sensor states called
signatures. This paper studies two placement scenarios in a
two-dimensional planar graph. In the first scenario, we prove
upper and lower bounds on the maximum number of achiev-
able signatures. In the second scenario, starting from the
placement of sensors and obscurants in which the maximum
number of signatures is achievable, we propose a novel math-
ematical model based on four main metrics: the object space
size, the sensor space size, the obscurant space size, and
the sizes of individual obscurants. We find the minimum and
maximum radiuses that bound the object detection area given
the number and sizes of sensors and obscurants. We derive
the obscurant space size as a function of the object space
size and the size of individual obscurants. We also provide
a linear relationship formula between the obscurant space
radius, the sensor space radius, and the obscurants’ radiuses
and conduct modeling experiments to study the relationship between these metrics. Finally, we deduct an explicit formula
for the maximum obscurant space size for the sensor space and the individual obscurant sizes.

Index Terms— Binary sensors, sensor array, reference structure, sensor deployment, optimization, modulator, obscu-
rant, signature, theoretical analysis.
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I. INTRODUCTION

SENSORS and sensor networks have many applications
in various fields [1]. Furthermore, arrays of sensors are

also very popular in both practical and theoretical studies.
Reference structures, also known as modulators or obscurants,
are materials distributed in the radiation space between an
object and a measurement system to modulate radiation prop-
erties such as absorption, permittivity, and polarization [2].
Reference structures are mostly applied in object analysis,
including imaging, where object analysis encompasses para-
meter estimation, and classification [2], [3]. For parameter esti-
mation, including location, orientation, velocity, or trajectory,
there are many applications such as target counting [4]–[7],
localization [8], [9] and multi-target tracking [10]–[13]. For
classification, as in object identity, type, or group, cur-
rent applications focus mainly on human activity recogni-
tion [14]–[19]. In such applications, reference structures
enhance the spatial awareness of binary sensors. Binary
sensors with reference structures exhibit enhanced spatial
awareness and can locate and track intrusion more accurately.
Since video cameras are widely used, binary sensor networks
equipped with reference structures appear redundant. However,
the combination of reference structure and binary sensor
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networks is attracting increased investigation due to enhanced
privacy protection and good performance in low-cost, low
power consumption networks.

Reference structure is founded in computational imaging
theory [2], [20]–[24]. The authors in [20] give the continuous
and discrete geometric models of the measurement equation
with reference structure by quantifying the one-dimension
light pipes connecting target and sensor elements with binary
bits and constructing the transformation matrix based on
the Hadamard matrix. With three-dimensional plastic beads
modulating sensor sense views, the authors in [21] study
the reconstruction of source-target on a three-dimensional
plane from measurements on a two-dimensional focal plane.
A sensor array system is applied to accurately estimate the size
of a two-dimensional object without ever forming a physical
image [22]. Based on reference structures, a motion tracking
system is implemented to detect human motion in one of
15 cells in a 1.6m × 1.6m area [24]. The authors in [2]
introduce a compressive measurement system to tomography
imaging with reference structure. Utilizing reference struc-
ture tomography and binary sensors to segment the field of
interest (FOI) into cells, the researchers give the upper and
lower bounds of distinct signatures that can be realized in
deployment models [24].

Based on the theoretical foundations of David J. Brady
in [2], [24], researchers promote the study of reference struc-
ture in three main aspects: design shapes of reference structure,
segmentation of the FOI, and coding the segmented subregions
(or cells) of the FOI. The shapes of reference structures
encompass fence form [11], fan shape [16], ring shape [16],
lotus form [17], hemisphere-shape [25], [26], cylinder shell-
shape [26], hollow-carved disk [27] etc. For the segmentation
of the FOI, the authors in [30] provide an upper bound
on the number of unique cells which have common edges
with the boundary of the FOI. In [31], a tool is provided
to acquire the segmentation information of the FOI, such
as the number of subregions and their codes. The necessary
and sufficient conditions to segment the FOI into the max-
imum number of cells are presented in [32]. The authors
in [33], [34] prove that the maximum number of signatures
with a certain number of sensors can be achieved using an
unlimited number of obscurants to modulate the sensors’
views.

In this paper, we first study an initial placement scenario of
sensors and modulators and determine upper and lower bounds
on the maximum number of signatures achieved. We then
extend our sensor-modulator placement model based on the
design in [34]. We use this deployment model as a starting
point since the maximum number of signatures is achievable
in this scenario ([34]). While [34] studies maximizing the
number of signatures, in this paper, we focus on the influence
of reference structure on binary sensor deployments in a place-
ment scenario in which the maximum number of signatures is
achievable. More specifically, we build a novel mathematical
model for sensors and obscurants, taking into account four
main metrics: the object space size, the sensor space size, the
obscurant space size, and the sizes of individual obscurants as
well as the relationships between them. The contributions of

Fig. 1. A sensor array with an observation space.

this paper in the second deployment scenario are summarized
as follows:

• We determine explicit analytic formulas for the minimum
and maximum object space size relative to the size of the
sensor space, the obscurant space, and the sizes of the
individual obscurants.

• We provide a formula for the obscurant space size as a
function of the object space and the size of individual
obscurants.

• We deduct a linear relationship formula and conduct
experiments to study the relationships among the fol-
lowing metrics: the sensor space radius, the radius of
an obscurant, and the radius of the circle on which the
centers of all obscurants are located.

• Finally, we derive an explicit expression for the maximum
obscurant space size in terms of the sensors’ space and
the individual obscurant sizes.

The rest of the paper is organized as follows. Section II
introduces the initial research model and proves upper and
lower bounds on the maximum number of signatures in
this scenario. Section III describes our detailed mathemati-
cal model and main analytical results. Section IV presents
experimental results related to four metrics: object space
radius, sensor space radius, obscurant space radius, and each
obscurant’s radius. We conclude the paper in Section V.

II. INITIAL MODEL AND THEORETIC STUDIES

We start with the study of a modulated sensor system
deployment in a two-dimensional planar graph as in Fig. 1.

Based on Fig. 1 and the assumptions in [29], [31], we give
the following definitions:

• The object space where target objects can be detected is
shaped as a disk and denoted as �.
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• The detection space, denoted as X , is also shaped as a
disk (see Fig. 1).

• Modulators/obscurants are deployed in the region
between the detection line (border of the detection space)
and the object space (see Fig. 1).

• Sensors are deployed on the detection line, and obscurants
(reference structures) are deployed between sensors and
target objects. For m sensors and n obscurants, we have
S = s0, . . . , sm−1 and O = o0, . . . , on−1.

• For any location p ∈ � and si ∈ S, if p is visible to
sensor si , we have χi (p) = 1. Otherwise, p is not visible
to sensor si and χi (p) = 0. For all the m sensors, let
χ : � → {0, 1}m and χ(p) = χm−1(p) . . . χ0(p), where
χ(p) is the signature of location p.

• The distinct signatures corresponding to locations in the
object space are denoted as �(S, O,�) = {χ(p)|p ∈
�}. By setting π(S, O,�) = |�(S, O,�)|, we define
π(m, n) = max|S|=m,|O|=n

π(S, O,�), the maximum number

of distinct signatures realized by a system with m sensors
and n obscurants.

Given the scenario described above, we present upper and
lower bounds on the maximum number of signatures when
the object space is large. The first two theorems focus on the
case where obscurants are placed along a circle between
the detection line and the object space, while theorems and
study the case where obscurants are placed along with several
concentric circles between the detection line and the object
space.

Theorem 1: In a sensor system, shown in Fig. 1, m point
sensors are placed along a circle (detection line) at equal
intervals. The object space is a disk. n obscurants are placed
along a circle between the detection circle and object space.
Under the assumption that at least 2 sensors cover each point
and that the radius of the object space is large enough, the
curves along which both the sensors and obscurants are placed
can be approximated by parallel lines. In this case, an upper
bound of π(m, n) is O(m2n2).

Proof: Each sensor is associated with one obscurant,
therefore assuming 2 sensors and 2 obscurants, this leads to
4 signatures: 00, 01, 10 and 11. Generalizing, we can form(

m

2

)
= m(m − 1)/2

different groups of 2 sensors out of the total of m sensors.
Similarly, we can form

(n
2

)
different groups of 2 obscurants out

of the total of n obscurants. Therefore any 2 sensors coupled
with any 2 obscurants will create at most 4 signatures. This
yields:

π(m, n) = 4

(
m

2

)(
n

2

)
= m(m − 1)n(n − 1) < m2n2

⇒ π(m, n) = O(m2n2).

Theorem 2: In a sensor system, shown in Fig. 1, m point
sensors are placed along a circle (detection line) at equal
intervals. The object space is a disk. n obscurants are placed
along a circle which is between the detection space and the

object space. Under the assumption that the radius of the object
space is large enough, the curves along which both the sensors
and obscurants are placed can be approximated by parallel
lines. Since we are studying a large object space, we assume
a sensor system with at least 3 sensors and modulators, i.e.
m, n ≥ 3. In this case, for each L such that 1

2 (e + 1) < L <

m
log(m) , a lower bound of π(m, n) is �( 8log(3)

3
L log(L)mn

log[L log(L)mn]).
Here we denote log(x) := loge(x) = ln(x), x > 0.

Proof: Function f (x) = x log(x) is strictly convex on
interval (0,∞), since f ′′(x) = (log(x) + 1)′ = 1/x > 0,
∀x > 0. Consider the following property of convex differen-
tiable functions on (0,∞):

f (x) ≥ f (x0) + f ′(x0‘)(x − x0), x0, x ∈ (0,∞) (1)

The geometric interpretation of inequality (1) is that the
graph of a convex, differentiable function is above the tangent
drawn through any point (x0, f (x0)) to the graph. By replacing
f (x) = x log(x), x = L, x0 = e in (1) we have:

L log(L) ≥ e + (log(e) + 1)(L − e) = e + 2(L − e)

= 2L − e > 1 (2)

The last inequality in (2) is equivalent with the hypothesis
1
2 (e + 1) < L. Therefore:

1/ log[L log(L)mn] = 1/(log(L log(L)) + log(mn))

≤ 1/(log(2L − e) + log(mn))

< 1/ log(mn)

By also using the assumption L < m/ log(m), we have

L log(L)mn
log[L log(L)mn]

π(m, n)

<

m
log(m) log( m

log(m) )mn

log(mn)m(m − 1)n(n − 1
)

= m − 1 + 1

m − 1

1

n − 1

1

log(mn)

log(m) − log(log(m))

log(m)

< (1 + 1

2
)
1

2

1

log(32)
= 3

8 log(3
)

⇒ π(m, n) >
8 log(3)

3

L log(L)mn

log[L log(L)mn]

Theorem 3: In a sensor system, shown in Fig. 1, m point
sensors are placed along a circle (detection line) at equal
intervals. The object space is a disk. n obscurants are placed
along with several circles between the detection space and
the object space. Under the assumption that the radius of the
object space is large enough, the curves along which both
the sensors and obscurants are placed can be approximated as
several parallel lines. In this case, an upper bound of π(m, n)

is O(m2n2).
Proof: This is a consequence of Theorem 1. Let there

be a pair of sensors and a pair of obscurants, such that
they generate at most 4 different signatures. Consider a new
pair of obscurants on the same horizontal as the first pair.
Together with the first pair, this new pair generates at most
4 signatures. Therefore, given 2 sensors and 4 obscurants,
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there are 4 + 4 = 8 different signatures. If however, each
of the 2 pairs of obscurants are placed on distinct parallel
lines, then, given 2 sensors and 4 obscurants, there are only
4 different signatures. Therefore we may have less signatures
than in Theorem 1. It implies:

π(m, n) ≤ πT heorem1(m, n) < m2n2

⇒ π(m, n) = O(m2n2)

One can give examples of a pair of sensors and a pair of
obscurants for which the signature 00 does not appear.

Theorem 4: In a sensor system, shown in Fig. 1, m point
sensors are placed along a circle (detection line) at equal
intervals. The object space is a disk. n obscurants are placed
along k circles which are all between the detection space and
the object space. Under the assumption that the radius of the
object space is large enough, the curves along which both
the sensors and obscurants are placed can be approximated
as k parallel lines, with n/k obscurants on each line and
n/k ≥ 3. We assume n/k to be an integer and m, n ≥ 3.
In this case, a lower bound of π(m, n) is �( L log(L)mn

log[L log(L)mn/k]),
where 1

2 (e + 1) < L < m
log(m) .

Proof: According to Theorem 2, for n/k ≥ 3 on a line
we have:

π(m, n/k) ≥ 8

3
log(3)

L log(L)mn/k

log[L log(L)mn/k]
Given that we have k horizontal lines, we obtain:

π(m, n) = kπ(m, n/k) ≥ 8

3
log(3)

L log(L)mn

log[L log(L)mn/k]

III. DETAILED MODEL AND THEORETIC STUDIES

In this section, we extend the placement model from
Section II with a set of concrete assumptions, starting from
the study of a modulated sensor system that achieves
the maximum number of signatures ([34]). In this model
shown in Fig. 2, sensors and obscurants are deployed in a
two-dimensional planar graph under the following assump-
tions: a sensor is a point, an obscurant is a disk, the sensor
space, and the object space are both disks of different radiuses.
Sensors are deployed at equal intervals from one another.
Similarly, obscurants are deployed at equal intervals from one
another. The obscurants are placed between the detection line
and the object space on a circle.

We consider the case when m = n, i.e., each sensor
corresponds to an obscurant. In Fig. 2, let R be the radius of
the sensor space X , and r be the radius of the object space, �,
with R > r .

For the sake of simplicity, we assume that all obscurants
are disk-shaped, of the same radius robsc. These conditions are
not too restrictive. Indeed, if an obscurant is not disk-shaped,
we replace it with the disk of minimum radius, which contains
the obscurant. We then choose the largest of these radiuses.
Each obscurant will be contained in the disk corresponding to
the maximum radius. Each sensor corresponds to an obscurant,
such that the center of the disk of an obscurant o j , the sensor

Fig. 2. A sensor system.

Sj corresponding to obscurant o j and the center O of the
detection space are three collinear points, j = 0, 1, . . . , m −1.
Assume also that the centers of all obscurants are situ-
ated on a circle centered at O of radius Robsc such that
Robsc + robsc < R. (see Fig. 2).

The maximum number of signatures, 2n , as proven in [34],
is achievable under the assumptions above.

We are interested in the case when r , the radius of the object
space, is large. Conversely, suppose r is small enough relative
to the radius of each obscurant robsc. In that case, the object
space will be completely contained in the shadow created by
the obscurant, and the corresponding sensor will detect no
object to the obscurant. Repeating the same process for all
sensor-obscurant pairs, the object space will not be visible to
any of the sensors, and therefore π(m, n) = 1 with the only
signature being 00 . . . 0.

Following, we determine the minimum and maximum
radiuses for the object space relative to the size of the sensor
space and the size of each obscurant. We also provide a
way to fine-tune the sensor-obscurant pair angle based on the
obscurant’s size, the sensor space size, and the size of the
obscurant space.

Theorem 5: In a sensor system, shown in Fig. 2, m point
sensors are placed along a circle (detection line) at equal inter-
vals. The detection circle has given radius R. The object space
is shaped like a disk of radius r . m obscurants are placed along
a circle between the detection circle and the object space. The
number of obscurants is the same as the number of sensors,
as each obscurant is associated with a sensor. We assume
R > 6robsc, that is, the radius of the sensor’s space is at least
six times larger than an obscurant’s radius. This assumption is
motivated by geometric and computational reasons (see Fig. 2
and proof below). We also assume R − Robsc = λrobsc, λ > 1.
This condition emerges naturally because obscurants are “in
front of” sensors, between the sensors and the object space.

Then,

rmin = Rrobsc

R − Robsc
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and

rmax = Robsc − robsc

In addition,

Robsc ∈
(

(robsc + R) − √
d

2
,
(robsc + R) + √

d

2

)

where

d = R2 − 6Rrobsc + r2
obsc

is a necessary and sufficient condition for rmin < rmax . In this
case, we can then choose r between rmin and rmax .

We also provide a way to fine tune the sensor-obscurant pair
angle α by showing that

α = 2 arcsin
1

λ
∈ (0, 180◦)

Proof: Let Sj be a sensor on the detection circle centered
in O. We denote by o j the center of the disk area of its
corresponding obscurant. Consider the tangents from Sj to
the circle of its corresponding obscurant. The radius of the
obscurant’s disk, drawn from o j to the point of tangency,
is perpendicular to the tangent ([36]), forming the smaller
triangle in Fig. 2, highlighted in yellow. Also consider the
perpendicular from O to the same tangent (see Fig. 2). Any
radius of the object space smaller than the length of this
perpendicular segment will define an object area that is com-
pletely obscured from the sensor. We denote the length of
this segment to be rmin . We are therefore looking for a radius
r > rmin . In order to determine rmin , consider the two triangles
highlighted on yellow in Fig. 2. These two triangles are similar
as the two segments of lengths rmin and robsc are parallel, and
S, o, and O are collinear. Applying Thales’ theorem for basic
proportionality [35], we have:

rmin

robsc
= R

R − Robsc

⇔ rmin = Rrobsc

R − Robsc
(3)

Since the obscurants are assumed to be outside of, or at most
tangent to the object space, we have:

rmax = Robsc − robsc (4)

On the other hand, based on the hypothesis,

R = Robsc + λrobsc

⇒ R > Robsc + robsc (5)

In order to choose r between rmin and rmax we need:
rmin < rmax (6)

From (3) and (4), inequality (6) is equivalent to:
Rrobsc

R − Robsc
< Robsc − robsc

⇔ Rrobsc < ( Robsc − robsc) ( R − Robsc)

⇔ R2
obsc − ( robsc+ R) Robsc+2 Rrobsc < 0 (7)

We consider the polynomial function:
p(x) := x2 − (robsc + R)x + 2Rrobsc, x ∈ R (8)

The associated equation:
p(x) = 0 (9)

has discriminant:
d = (robsc + R)2 − 8Rrobsc = R2 − 6Rrobsc + r2

obsc

≥ R(R − 6robsc) > 0 (10)

Inequality (10) is true based on the assumption R > 6robsc

in which the obscurants’ radiuses are at least six times smaller
than the radius of the detection space. Since d is positive,
equation (8) has two distinct real solutions:

x1 = (robsc + R) − √
d

2
, x2 = (robsc + R) + √

d

2
(11)

(7) is equivalent to:

Robsc ∈ (
(robsc + R) − √

d

2
,
(robsc + R) + √

d

2
) (12)

Therefore (6) is satisfied by choosing Robsc as above and
choosing r as in (6) is equivalent to Robsc as in (12).

For proving the pair angle formula, from Fig 2 we have:

sin(
α

2
) = robsc

R − Robsc
= 1

λ

⇔ α = 2 arcsin(
1

λ
)

As shown in [34], α should be outside of this set of
values 180−i ∗ 360/n|i = 1, . . . , (n/2) − 1 in order to avoid
overlapping edge lights. Corollary 1 allows for a suitable
choice for λ and provides a way to deploy sensor-obscurant
pairs to avoid unwanted α values in the set above.

Corollary 1: Since λrobsc = R − Robsc < R and R is
given, finite, implies robsc goes to zero when λ goes to infinity.
Therefore we have shown that α takes all values in (0, 1800)
when λ ∈ (1,∞).

The next theorem provides valuable insight into how to
place obscurants relative to sensors and the center of the
detection area, O (Fig. 2). We provide a formula for the
obscurants’ distance from the center of the detection area, O.
We also derive the relationship between obscurants and sensors
in terms of their distance from O.

Theorem 6: Let r be the radius of the object space, R the
radius of the detection area, robsc the radius of an obscurant,
and Robsc the radius of the circle on which the centers of all
obscurants are located. We will use the following notations:

Robsc = βrobsc, where β = kλ (13)

R − Robsc = λrobsc, where λ > 1, k > 1. (14)

Then we obtain:
rmin = (k + 1)robsc (15)

k = Robsc

R − Robsc
(16)
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and

q ≤ k < q + 1 ⇔ q

q + 1
≤ Robsc

R
<

q + 1

q + 2
(17)

Proof: From (14), we have

R = Robsc + λrobsc
(13)= βrobsc + λrobsc = (β + λ)robsc.

From Theorem 5, we know that

rmin = Rrobsc

R − Robsc
= (λ + β)r2

obsc

λrobsc
= λ + β

λ
robsc

= λ + kλ

λ
robsc = (1 + k)robsc.

This proves (15).
Now (3) and (15) yield:

rmin = (1 + k)robsc = Rrobsc

R − Robsc

⇒ k = R

R − Robsc
− 1 = Robsc

R − Robsc
.

Hence, (16) is proven as well. Next, we prove (17). To this
aim, we apply (16):

q ≤ k
(16)= Robsc

R − Robsc
< q + 1

⇔
{

q R − q Robsc ≤ Robsc and

Robsc < (q + 1)R − (q + 1)Robsc

⇔
{

R ≤ q+1
q Robsc and

R > q+2
q+1 Robsc

⇔ q

q + 1
≤ Robsc

R
<

q + 1

q + 2

Therefore, (17) holds.
Corollary 2: Considering R fixed, a good choice for Robsc

R
would be the middle of the interval ( q

q+1 , q+1
q+2 ). Therefore,

we can choose
Robsc

R
= 1

2
(

q

q + 1
+ q + 1

q + 2
)

In particular, for q = 1, we have:
1 ≤ k < 2 ⇔ 1

2
≤ Robsc

R
<

2

3

In this case, we can choose Robsc = 7
12 R.

When q → ∞, the ratio Robsc
R → 1 with a speed inversely

proportional to q . Therefore, for large q , the location of
obscurants tends to overlap with that of sensors.

Next, we derive an analytic formula for the size of the
obscurant space expressed as a function of the object space
size and the sizes of the individual obscurants.

Corollary 3: Using the assumptions in Theorem 6, we have:
Robsc,max = 1

2
(2R + robsc −

√
4Rrobsc + r2

obsc)

This expression for Robsc is achieved for λ = k.
Proof: From (13) we derive:

Robsc = kλrobsc ≤ k2 + λ2

2
robsc (18)

In the above inequality, we have used the fact that (k−λ)2 ≥ 0.
Equality, i.e. (k − λ)2 = 0 is achieved iff k = λ. Therefore,
by choosing k = λ, we obtain the maximal value for Robsc:

Robsc,max = k2robsc

From (16), we get:
Robsc,max

= R2
obsc,max

(R − Robsc,max)2 robsc

⇔ R2
obsc,max − 2RRobsc,max − robsc Robsc,max + R2 = 0

⇔ R2
obsc,max − (2R + robsc)Robsc,max + R2 = 0

Solving for Robsc,max we get:
Robsc,max = 1

2

(
2R + robsc ±

√
(2R + robsc)2 − 4R2

)
= 1

2

(
2R + robsc ±

√
4Rrobsc + r2

obsc

)
On the other hand, Robsc,max needs to satisfy (5). Using the
expression of Robsc,max above in (5), we find that only the
smaller of the roots satisfies, therefore:

Robsc,max = 1

2

(
2R + robsc −

√
4Rrobsc + r2

obsc

)

Corollary 3 provides an expression for the maximal value of
the obscurant space. This result also shows that the radius of
the obscurant space increases to infinity with the same speed
as the radius of the sensor space.

IV. EXPERIMENTS

We discuss the relationships among robsc, R, Robsc and
rmin in two cases. In both cases, following the relations
from Theorem 6, variables robsc and R are in a linear
relationship. Variable Robsc is chosen differently in each of
the two cases as follows: 1) in the first case, the interval
( (robsc+R)−√

d
2 , (robsc+R)+√

d
2 ) is equally divided into several

equally sized intervals and a value for Robsc is selected in each
small interval. 2) in the second case, Robsc is set satisfying a
linear relationship with R, i.e., robsc, R and Robsc are in a
linear relationship.

In the first case, the values of variables robsc, R and Robsc

are selected under the conditions in Theorem 5, i.e., R >

6robsc and Robsc ∈ ( (robsc+R)−√
d

2 , (robsc+R)+√
d

2 ). Moreover,
there are 21 values of robsc ranging from 0.1 to 2.1. In order for
R to satisfy the condition R > 6robsc, a ratio whose 21 values
are ratio = {2.22, 2.82, . . . , 14.22} with an equal difference
of 0.6 is chosen. The values of R are obtained by R = 1.1 ∗
ratio. As to the values of Robsc, a variable called step is

defined as follows: step =
(robsc+R)+√

d
2 − (robsc+R)−√

d
2

21 =
√

d
21 =

0.3434. Based on step, we set Robsc = (robsc+R)−√
d

2 + 0.01 +
i ∗step, where i ∈ {0, 1, . . . , 20} and the value 0.01 is utilized
to make the smallest Robsc larger than (robsc+R)−√

d
2 .

In our experiments, we obtain the relationships among robsc,
Robsc, R and rmin by analyzing the figures. Firstly, a four
dimension figure Fig. 3(a) is plotted with the values of robsc,
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Fig. 3. robsc and R are in a linear relationship, and they only limit the value range of Robsc.

Robsc, R independent of each other. In Fig. 3(a), robsc, R
and Robsc are drawn as x-axis, y-axis and z-axis, respectively.
Moreover, the color in Fig. 3(a) represents the values of rmin .
From Fig. 3(a), we derive the following observations: 1) the
three-dimensional shape of the values of robsc, R and Robsc

form a lateral view of a tilted pyramid, which means the larger
the values of both R and robsc, the larger the values of Robsc;
2) the value of rmin increases as the values of robsc, R and
Robsc increase. Moreover, the largest value of rmin is achieved
when robsc is largest and both R and Robsc are close to their
smallest values. To observe the lateral view of the pyramid,

we drew its contours in Fig. 3(b). Any two adjacent contours
are at an equal distance since the values of Robsc are selected
with the same step. Moreover, the contours are in an arc shape
with different lengths.

Sub-figures in Fig. 4 are used to observe the hidden infor-
mation in Fig. 3(a). In Fig. 4 (a), we make the following
observation: the change in the values of rmin is relatively flat,
until it exponentially approaches the maximum value of rmin .
The same observation applies to Fig. 4 (b). In addition,
Fig. 4 (b) shows how the value of Robsc increases nonlinearly
as the value of robsc increases.
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Fig. 4. Figures of rmin with two of robsc, Robsc and R.

Fig. 5. (a) rmin, (b) rmax.

Based on Fig. 4 (c), we make the following observations: 1)
when R approaches its smallest value in the figure, the value
of rmin increases exponentially as the value of Robsc increases;
2) when R’s value approaches its largest value in the figure,

the value of rmin changes as the value of Robsc increases. The
normals to the small polygonal faces in Fig. 4 (c) are drawn
in Fig. 4 (d), represented by the arrows. From Fig. 4 (d),
we draw the following observations: 1) when Robsc < 5 and
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R < 10, the arrows are very close to each other. As both Robsc

and R increase, the distances among arrows increase, showing
that the value of rmin increases faster.

In the second case, we consider all three parameters robsc,
R and Robsc in a linear relationship with each other. From
Fig. 5 (a), we observe that the value of rmin changes linearly
as the values of the three parameters vary. Similarly to
Fig. 4, we can draw three sub-figures from the data shown
in Fig. 5 (a). We found that these are similar to Fig. 5 (a).
Hence, we have omitted the sub-figures.

Fig. 5 (b) illustrates how the value of rmax changes as the
values of R and robsc change. They are in a simple linear
relationship as stated in Theorem 6.

V. CONCLUSION

This paper presented an initial sensor modulator place-
ment scenario and provided upper and lower bounds on the
maximum number of signatures when the object space is
large. We then extended our model with a detailed place-
ment of sensors and obscurants. We built a mathematical
model disclosing the relationship among the object space,
the obscurant space, the detection space, and the sizes of
individual obscurants. In this second scenario, we established
the minimum and maximum size of the object space in which
objects can be detected. We further expressed the size of
the obscurant space as determined by the sensor space and
the sizes of individual obscurants. Finally, we derived the
maximum obscurant space size given the sensor space size and
the sizes of the individual obscurants. These results provide
insight into how to place obscurants relative to sensors and
the center of the detection area to achieve a maximum area
coverage. Intuitively, if obscurants are placed too close to
sensors and too far from the objects to be detected, the
whole object space can end up in the shadow of one or
more obscurants, with few or no signatures being created.
Conversely, obscurants should not be placed too far from
sensors since this will reduce the size of the target object
area where signatures are created. Our study provides concrete
bounds for the target object area in terms of sensor and
obscurant placement. We also quantify the distance at which
obscurants should be placed between sensors and the object
detection area and provide analytical formulas disclosing the
relationship between obscurants, sensors, and the target area.
These results can be used to avoid bad deployments and to
provide guidance for binary sensors and obscurants placement
in future deployments.
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