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Abstract—The complexity of cellular mobile systems renders
prevention-based techniques not adequate to guard against all
potential attacks. An intrusion detection system has become an
indispensable component to provide defense-in-depth security
mechanisms for wireless networks. In this paper, by exploiting
regularities demonstrated in users’ behaviors, we present a suite
of detection techniques to identify fraudulent usage of mobile
telecommunication services. Specifically, we explore users’ behav-
iors in terms of calling and mobility activities because they are
two of the most important components of mobile users’ profiles.
To utilize users’ calling activities, we formulate the intrusion de-
tection problem as a multifeature two-class pattern-classification
problem. Parameters including call-duration time, call inactivity
period, and call destination are extracted to form a feature vector
to reflect users’ calling activities. A nonparametric technique
known as the Parzen window with a Gaussian kernel, is used
to estimate a class-conditional probability density function. A
Bayesian decision rule is applied in order to achieve a desirable
error rate. To effectively exploit movement patterns demonstrated
by mobile users, we first propose a realistic network model inte-
grating geographic road-level granularities. Based on this model,
an instance-based learning technique is presented to construct
mobile users’ movement patterns. A user’s movement history is
stored and compared against newly observed movement instances.
We then define a novel similarity threshold to classify users’
current movement activities. We simulate users’ various behaviors
and provide simulation results.

Index Terms—Bayesian decision rule, instance-based learning
(IBL), intrusion detection, wireless network.

I. INTRODUCTION

THE UBIQUITOUS infrastructure, while dramatically in-
creasing functionality levels, has posed significant secu-

rity concerns on cellular mobile networks. Although there are
many security protocols that have been proposed for cellular
mobile networks, how to design a highly secure cellular mobile
network still remains a very challenging issue due to open
radio-transmission environment and physical vulnerability of
mobile devices.

Generally speaking, the following two complementary
classes of approaches exist to protect a system: prevention-
based and detection-based approaches. Security research into
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wired networks indicates that there are always some weak
points in the system that are hard to predict. This is partic-
ularly true for a wireless network, in which open wireless-
transmission media and low physical-security protection of
mobile devices pose additional challenges for prevention-based
approaches. For example, although security measures are taken
into account in the designs of second-generation (2G) and third-
generation (3G) digital cellular systems, security flaws keep
being reported in the literature [1]–[3]. One of the basic threats
is the illegitimate use of services, which can lead to the problem
of improper billing and masquerading and can cause drastic
damage to service providers. Therefore, in order to provide
defense-in-depth security mechanisms, a multilayer/multilevel
protection system is necessary. Serving as the first level of
protection schemes, prevention-based approaches (such as au-
thentication and encryption) can effectively reduce attacks by
keeping illegitimate users from entering the system. However,
if a device is compromised, all the secrets associated with
a device become open to attackers, rendering all prevention-
based techniques helpless and resulting in great damage to
the whole system. At this time, intrusion detection systems
(IDSs), serving as the second level of protection schemes, if
well designed, can effectively identify malicious activities and
help offer an adequate protection for the system.

In this paper, by exploiting mobile users’ calling patterns
and the users’ exhibited location history, we present a suite of
detection techniques to identify a group of particularly harmful
insider attackers—the masqueraders. Our work is based on
such an observation that most mobile users demonstrate certain
regularities in their daily lives. For example, because of regular
working rhythms such as daily or weekly business telephone
conferences, most users exhibit certain calling patterns. As
another example, a mobile user usually travels with a specific
destination in mind and tends to follow the shortest path to
it. A user’s mobility pattern is a reflection of the routines
of his daily life, and most mobile users have favorite routes
and habitual movement patterns. Although an attacker can
compromise all the secrets associated with a mobile device, he
could not intimate the authentic user’s profiles. This observation
is particularly true if the malicious users intend to cause drastic
damages. All these will make the adversary exhibit significant
skewed behaviors from that of the authentic user. Therefore,
by establishing an accurate profile of the mobile user and by
comparing it with the current observed activities, malicious
activities can be effectively identified.

Motivated by the above observations, we aim at designing
practical intrusion detection techniques for cellular mobile
networks. We focus on users’ calling and mobility activities
because they represent two of the most important components
of mobile users’ profiles. Specifically, to utilize users’ calling
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activities, we first apply the Chebyshev inequality to eliminate
obvious malicious calls. This can lead to a reduced number of
false alarms. We then formulate the intrusion detection problem
as a multifeature two-category pattern-classification problem.
Call duration time (CDT), call inactivity period (CIP), and call
destination (CD) are extracted to form a feature vector to reflect
users’ calling activities. A nonparametric technique, known as
the Parzen-window approach with a Gaussian kernel, is used to
estimate a smooth class-conditional density function. Because
of potential fraudulent usage of wireless services, normal and
abnormal usages may demonstrate distinct behaviors. There-
fore, a model of anomaly detection based on Bayesian decision
rule is then introduced, and its performance is discussed in
terms of false positive and detection rates. To utilize users’
mobility activities accurately and effectively, we first propose
a realistic network model integrating geographic road-level
granularities. The proposed network model takes into account
both users’ moving patterns and an actual location management
scheme in the current cellular system; i.e., whenever a user
crosses a boundary of a location area (LA), a location update
operation is performed. Based on this model, we present an
instance-based-learning (IBL) technique to construct users’
movement profiles. A similarity measure is defined to compare
a user’s activity with its constructed normal profile. A threshold
policy is then used to decide whether the current activity is
normal or not.

The rest of the paper is organized as follows. In Section II,
we further describe our motivations to develop IDSs for cel-
lular mobile networks. Section III describes the related work.
Section IV presents our threat model, network model, and
assumptions in developing intrusion detection schemes for
wireless networks. In Section V, we present Bayesian-decision-
rule-based detection algorithms, which utilize calling activities.
In Section VI, we present IBL-based detection algorithms,
which utilize mobility activities. Simulation results of both
algorithms are shown in Section VII. We conclude this paper
and point out a future work in Section VIII.

II. MOTIVATION

For most mobile users in wireless networks, their profiles,
in terms of calling and mobility activities, demonstrate some
regularity. Some examples include the following.

1) A user may have daily or weekly business telephone
conferences because of regular working rhythms, and
conferences may last a certain period of time because of
his schedule made in advance.

2) Billing plans subscribed by mobile users motivate them
to make short calls during daytime, whereas relatively
longer calls with friends and family members are made
on nights and weekends to avoid extra charges.

3) Daily commuting patterns of public-transportation users
are very regular. For example, studies in [24] conducted
experiments over a period of six weeks to study trajec-
tories that users follow and found out that users tend to
follow regular trajectories more than 70% of time.

Behaviors of fraudsters, on the other hand, demonstrate a
skewed distribution. All of these motivate us that we can learn a

mobile user’s behavior to construct his normal profile based on
detection techniques constructed to identify whether the user is
an intruder or not by comparing his current activities with his
established patterns.

Because of the potential wide variety of users’ behaviors,
there are a certain number of users who do not exhibit regular
patterns. For example, it is not easy to model the movement pat-
terns of taxi drivers. This kind of highly irregular yet legitimate
behaviors may result in inaccuracy in their established normal
profiles. Therefore, we should not expect that our detection
based on users’ profiles is accurate for all users in all situations.
We realize that, even for a normal user who demonstrates very
regular patterns, it is still possible to have deviations of his
normal profiles.

Based on these considerations, our paper is not motivated
to build a system to accurately detect all intrusions. We do
not expect our system to have zero false positives either. IDSs
will provide a complementary layer of protection for a system.
We do not expect an IDS to be available for all users under
any situation. Instead, our objective is to provide an optional
service to end users, as well as a useful administration tool for
service providers. A similar strategy has been used in credit-
card companies. For example, a customer will be called or
alarmed if an abnormal usage of his credit card is detected. For
example, his card was used in another country that is not his
residence and that he does not frequently visit.

In order to model users’ behaviors comprehensively, our
detection technique based on mobility activities needs to track
users’ locations. This will give rise to users’ location-privacy
issues. Therefore, our system provides a user with an option
to turn off this service. Privacy concerns must be properly
addressed before we can deploy this kind of service. It is
worth noticing that location-privacy issues have attracted much
attention from the research community [23]. Therefore, it is
promising to integrate our proposed service with other existing
location-privacy protection schemes.

With a prominent growth of mobile users and the ubiquity of
wireless networks, the approaches proposed in this paper are
general and can be used in many different applications. For
example, mobile users calling in a car fit with the application
naturally. The mobility-based approach can also fit the appli-
cations of other wireless networks. For example, in a campus
wireless network, the location of each user can be recorded
and compared with his established normal profile in order to
identify potential intruders.

III. RELATED WORK

As mentioned before, there are two important intrusion de-
tection techniques as follows: misuse detection and anomaly
detection. A good taxonomy of existing technologies is pre-
sented in [4]. The research of intrusion detection began with
Denning’s seminal paper [5]. Since then, many research efforts
have been devoted to different detection techniques, for exam-
ple, expert system [7], colored Petri nets [8], state-transition
analysis [9], neural networks [10], and so on. There are also
some fraud-detection systems in telecommunication systems.
Data mining [17], machine learning [18], etc. have been
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utilized to detect fraud data in telecommunication networks.
All existing approaches take into consideration domain-specific
knowledge to build suitable detection systems.

Relatively few research efforts have been devoted to intrusion
detection research of wireless networks. In [12], Samfat and
Molva proposed an intrusion detection architecture for mobile
networks, which includes two algorithms to model the behavior
of users in terms of both telephony activity and migration
patterns. Lin et al. [2] proposed an excellent study to detect
the potential fraudulent usage of cloned phones in cellular
mobile networks. Sun et al. [1], [6] proposed a mobility-based
detection system to identify potential masqueraders in cellular
mobile networks. Büschkes et al. [20] presented an approach
applying the Bayesian decision rule to user’s mobility profile to
increase security for wireless networks.

IV. ASSUMPTIONS

All research into intrusion detection is based on the fol-
lowing assumptions: 1) activities of a subject are observable
via auditing mechanisms of some systems, and 2) normal and
malicious activities should demonstrate distinct behaviors. Our
paper is no exception. Besides these, we make the following
assumptions.

First, we assume that our proposed detection schemes can
integrate with the existing databases in wireless networks, such
as a calling history database to describe users’ calling activities
and a mobility database to describe users’ mobility behaviors.
This information may already exist in the system for other
services. For example, a database recording calling history is
a necessary element to support billing services. We further
assume that this information is accurate and secure through
adequate protection measures. This is a realistic assumption
given the importance of these databases. To support the realistic
network model that we propose, we also assume the existence
of a path database that illustrates a digital map of the service
area. It is worth mentioning that much work has been carried
out in this area, aiming at enhancing the various aspects of
quality of service (QoS) in wireless networks [25].

Second, we assume that most users’ behaviors demonstrate
certain regularities. This makes it viable for us to reason
that the evidence in data establishes their normal profiles and
determine whether the system is currently under attack. This
assumption is reasonable if we consider most of the users’
regular daily/weekly working rhythms. Our detection algo-
rithms alone are not suitable for users who demonstrate totally
random behaviors. Nevertheless, our method is automatically
user-selective since the optional warning service mentioned
before will tend to give many false warning messages to this
type of users and force them to unsubscribe/disable such a
service.

Third, we assume that mobile devices can be compromised
and that all secrets associated with the compromised devices
are open to attackers. Under this assumption, we do not need
to assume or apply tamper-resistant hardware and software,
which are still costly and impractical to handheld devices. This
assumption justifies our research in anomaly detection since
all prevention-based techniques will be rendered helpless once

the mobile device is captured and compromised. If we could
assume tamper resistance of hardware/software, the whole se-
curity research could become much easier.

A. Threat Model

The complexity of a wireless mobile network system could
incur software and design errors. This could make many attacks
possible. One example is cell-phone cloning: a mobile phone
card of an authenticate user A is cloned by an attacker B,
which enables B to use a cloned phone card to make fraudulent
telephone calls. The legitimate phone user A gets billed for
the cloned phone’s calls. In addition, the masquerader can fake
the International Mobile Equipment Identifier and Subscriber
Identity Module card in order to get the service illegally. In
subscription fraud, fraudsters can also subscribe to the service
using the authentic user’s name and obtain an account without
the intention of paying the bill.

B. Network Model

Most of the previous work on intrusion detections for wire-
less cellular networks uses structured-graph network topology
models, such as hexagonal or square-cell configurations. The
cells are usually determined by the architecture of the cellular
networks. However, in practice, considering the fact that a
mobile user usually drives along the road, cell-based models
may not precisely locate a mobile user and model the trajectory
of a user because they do not support the fine granularity of road
network [13]. Moreover, most users tend to follow speed limit
signs when driving. In addition, each user has his preference
of traveling speed. Therefore, it takes a user roughly the same
amount of time to travel a specific path (we will not consider the
possible traffic jam in this paper). In reality, there also exists a
road network, which is overlapped with a location area (LA),
which consists of several or many cells. Considering all these,
we propose the following network model, as shown in Fig. 1.

Fig. 1(a) shows the network topology in one LA, which
consists of seven cells. In Fig. 1(a), straight bold lines represent
the road network. Each hexagon represents one cell. v1, v2, v3,
and v4 represent the intersection points of the road network and
the boundary of the LA. For current mobile systems, location
updates happen when a user enters or leaves one LA. This
is one of the most common ways to track the cellular mobile
phones. It is true whenever a user is making a phone call or not.
Considering these, we propose the network model, as shown in
Fig. 1(b).

In Fig. 1(b), each intersection of the road segment and the LA
is modeled as a vertex. In our example, we have four vertices,
v1, v2, v3, and v4. These vertices form a fully connected graph,
meaning that there is one path between any two vertices. In this
way, we can ignore the complex internal road network inside
one LA.

It is possible that, in one LA, there is more than one possible
path connecting two vertices. We assume that, in one LA, one
user prefers one specific path. This means that, in Fig. 1(b), for
a specific user, it will take him roughly the same amount of time
to travel between any two vertices. If one user has variations in
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Fig. 1. Topology model. (a) One LA. (b) Network model.

his traveling habit, i.e., if he takes two different paths between
the same two vertices, we can have two edges connecting these
two vertices in Fig. 1(b).

The network model shown in Fig. 1 is more accurate than
the model only considering the cell list traversed by each user,
considering the current mechanisms that mobile networks use
to track users’ location information. Furthermore, most road
segments have associated speed limits, and most users have a
driving habit. For example, some users want to strictly follow
the speed limit, whereas others tend to drive 10 mi/h faster. This
will take different users different amounts of time to traverse a
specific road segment (edge).

This network model is also more realistic than a model
considering the actual path topology. For example, Karimi
and Liu [13] proposed a network model that uses edges to
model routes and vertices to model traffic lights. Although this
model is very accurate, however, in practice, it is difficult for
us to track a user’s location information based on this model
in current 2G/3G cellular networks. A location update often
happens when a user traverses the LA border. When the user is
inside the LA, if the user is not making a phone call, the user’s
location information is not visible to the system. Therefore,
although our model ignores potential different routes between
two vertices, it fully takes into consideration the information
that can be provided by current cellular mobile networks, which
makes it suitable for our IDS.

V. CALLING-ACTIVITY-BASED DETECTION ALGORITHM

In this section, we present our detection scheme based on
users’ calling activities. Features such as CDT, CIP, and CD
are extracted to form the feature vector to reflect users’ calling
activities. Because of the potential wide variety of user’s calling
activities, we first adopt Chebyshev inequality to eliminate
obvious abnormal calls. This helps in decreasing the false-
positive rate. We then formulate the intrusion detection problem
as a multifeature two-class pattern-classification problem. A
nonparametric technique, known as the Parzen-window ap-
proach with a Gaussian kernel, is used to estimate the smooth
class-conditional density function of the feature-vector values.

Fig. 2. Call vectors.

Based on this, the Bayesian decision rule is then applied in
order to achieve the desirable error rate in terms of false-alarm
and detection rates.

A. Feature Selection

The first step in intrusion detection is to extract effective
features. Features are security-related measures that can be used
to construct suitable detection algorithms. Effective features
must be selected to reflect the activities of a subject. If the
dimension of the feature vector is too small, they may not
reflect a variety of calling activities. On the other hand, if the
dimension of the feature vector is too large, it results in a heavy
computational overhead.

Basically, the calling activities of an observed user can be
represented using Fig. 2. When the mobile station initiates and
terminates call i, the system can record tsi (the time when the
ith call starts) and tfi (the time when the ith call terminates).
From the collected data based on Fig. 2, we can compute the
statistical call vector of the user. One advantage in defining tsi

and tfi is that they are easily defined with the help of existing
signaling messages. A similar approach is also adopted in [12],
which can be used to characterize the calling activities of each
user. In this way, the incurred overhead in the mobile networks
can be minimized.

Based on the above considerations, we adopt a tuple defini-
tion as follows to represent calling activities of a mobile user:
CDT, CIP, and CD. We adopt these features because they can be
used to represent users’ calling activities. It is worth mentioning
that feature selection is domain-specific and infamously hard to
handle. How to select effective features turns out to be a very
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challenging research topic. We leave it as one of our important
future works.

1) CDT represents the duration that a call lasts. For any ith
call of a user, let tsi and tfi denote the time when the call
starts and the time when it finishes, respectively. The ith
CDT is defined as (tfi − tsi).

2) CIP represents the time period between the time instant
when a new call is initiated and the time instant when
the previous call was finished. The ith CIP is defined as
(tsi+1 − tfi).

3) CD represents the destination of a call.
Based on a user’s calling habit, we can treat a group of CDs

with the same properties of CDT and CIP as one CD. For
example, calls that have different country codes may have the
same statistical properties of CDT and CIP. We can combine
the different CDs of these international calls into one CD. In
this way, the number of states maintained for the user can
be effectively reduced. Similar strategies can also be further
applied to national calls based on the user’s behaviors.

B. Bayesian Decision Rule

Let x = (CDT, CIP, CD) denote the feature vector x, which
is in a 3-D Euclidean space R3 (feature space). The feature
space includes all possible states of a user’s calling activities.
We then apply the Bayesian decision rule to classify these
calling activities.

Let {ω1, . . . , ωc} denote the finite set of c states (cate-
gories). Let the feature vector x be a d-dimensional vector-
valued random variable. We use an uppercase P (.) to denote
a probability-mass function and a lowercase p(.) to denote a
probability-density function (pdf). Bayesian formula could be
used to determine the a posteriori probability P (ωj |x) in the
following way:

P (ωj |x) =
p(x|ωj)P (ωj)

p(x)
(1)

where p(x|ωj) is the class-conditional probability density of x
for a given class ωj . It is also called the likelihood of ωj with
respect to x. P (ωj) is the a priori probability of class ωj . p(x)
is the probability density of the observed feature vector x, and
it is constant for every class ωj for a particular x.

Given the sample D, (1) then becomes

P (ωj |x,D) =
p(x|ωj , D)P (ωj |D)∑c
i=1 p(x|ωi, D)P (ωi|D)

=
p(x|ωj , Dj)P (ωj)∑c
i=1 p(x|ωi, Di)P (ωi)

. (2)

Here, we separate the training samples by class into c
subsets D1, D2, . . . , Dc. Equation (2) suggests that we can
use the information provided by the training sample to help
determine both the class-conditional densities and the a priori
probabilities.

In (1), p(x) is unimportant as far as making a decision
is concerned. As we can see from (2), the purpose of p(x)
is to normalize P (ωj |x,D) to ensure that the a posteriori

distribution P (ωj |x,D) integrates or sums to one. We can
calculate the a priori P (ωi) based on the collected training data.
P (ωi) can also be assigned based on some domain knowledge.
For example, if we have n vectors and ni of them are of class
ωi, then the empirical probability of P (ωi) is estimated as
P (ωi) = ni/n.

p(x|ωj) is more difficult to compute. In order to compute
p(x|ωj), we can divide the feature-vector space into intervals
and count the number of vectors falling into every interval.
This approach only works when the number of intervals and
the dimensions of the vectors are both small. In our case,
because of the continuous nature of CDT and CIP, it is very
difficult to decide a proper interval for each feature value. Other
possible approaches include the classical maximum-likelihood
estimation or the Bayesian estimation if the forms of density
functions of p(x|ωj) are known [15]. However, this assumption
is suspicious given the fact that common parametric forms
rarely fit the densities of the potential wide variety of a user’s
calling activities.

Considering all these, we utilize a nonparametric approach
based on a Parzen window to estimate the class-conditional
PDF p(x|ωi), as detailed in Section V-D.

We use ω1 to denote the normal state and ω2 to denote the
abnormal state. In this way, the intrusion detection problem can
be formulated as a multifeature two-state pattern-classification
problem. In order to classify, we resort to the Bayesian decision
rule [15]

If P (ω1|x) > P (ω2|x) Decide ω1 Else Decide ω2.
(3)

C. Classification Error Rate

When a new observation (a new phone call) x is made, the
probability of error could be defined as

P (error|x) =
{

P (ω1|x), if we decide ω2

P (ω2|x), if we decide ω1.
(4)

The decision rule illustrated in (3) could minimize the aver-
age probability of error. Let us consider the example shown in
Fig. 3. Here, we use the 1-D feature vector for the purpose of
illustration. Its probability of error is defined as

P (error) =

∞∫
−∞

P (error,x)dx

= P (x ∈ R2, ω1) + P (x ∈ R1, ω2)

=
∫

R2

p(x|ω1)P (ω1)dx +
∫

R1

p(x|ω2)P (ω2)dx.

That is, given the observed feature vector x, we can use the
Bayesian decision rule to classify the calling activities.

D. Density Estimation Using Parzen Window

As we stated before, it is very difficult to calculate p(x|ωi).
Due to the potential diversified user behaviors, it is unrealistic to
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Fig. 3. Classification error rate of Bayesian decision rule.

assume that the underlying pdf is known. Therefore, we resort
to the Parzen window [15]—a very popular nonparametric
approach used to estimate probability densities.

Let p(x) be the pdf to be estimated. One of the most
fundamental techniques to estimate any unknown density relies
on the fact that the probability P that a vector x falls in a region
R is given by P =

∫
R

p(x′)dx′.
In this way, we can estimate the smooth value of p by

estimating the probability P . The Parzen-window approach
to estimate densities can be assumed that the region R is a
d-dimensional hypercube. If hn is the length of an edge of the
hypercube R, its volume is given by Vn = hd

n.
To find the number of samples that fall within the hypercube

R, we define the following window function:

ϕ(u) =
{

1, |uj | ≤ 1/2; j = 1, . . . , d
0, otherwise.

ϕ(u) is known as a Parzen window. Thus, the num-
ber of samples in this hypercube is given by kn =∑n

i=1 ϕ((x − xi)/hn). The estimate is obtained as pn(x) =
(1/n)

∑n
i=1(1/Vn)ϕ((x − xi)/hn).

As we can see, the window function ϕ(u) is being used
for interpolation—each sample contributing to the estimate in
accordance with its distance from x.

To examine the effect that the window width hn has on
pn(x), function δn(x) is defined as δn(x) = (1/Vn)ϕ(x/hn).
Then, pn(x) is defined as pn(x) = (1/n)

∑n
i=1 δn(x − xi).

The window function ϕ(u) has several drawbacks. It
can yield density estimates that have discontinuities. In ad-
dition, all the data points in the hypercube R centered
around the estimation point weight equally, regardless of
their distance to the estimation point [15]. To overcome
these potential drawbacks, we adopt a commonly used mul-
tivariate Gaussian density function as our smooth kernel
function ϕ(x) = (1/(2π)d/2) exp[−(1/2)xT x], where x is a
d-dimensional column vector.

It is easy to see that
∫

Rd ϕ(x)dx = 1. In our later simulation,
d is set to three. hn also plays an important effect on the
estimation of pn(x). A too large hn leads to little resolution
on pn(x), whereas a too small hn leads to too much statis-
tical variability [15]. In our simulation shown later, we adopt

different hn values to adjust the smoothness of the density
estimates until the compromise is acceptable, as suggested
in [15].

E. Chebyshev Inequality

Because of the potential diversified user calling activities,
it is possible that a normal user’s activity is very skewed. We
use the Chebyshev inequality [21] to preprocess these kinds of
behaviors.

Chebyshev inequality states as follows: let x be a random
variable with a mean µ and a variance σ2; then, for all positive
t, P (|x − µ| > t) ≤ σ2/t2.

The Chebyshev inequality provides an upper bound on the
probability that the value exceeds a certain threshold t from the
mean µ of the variable. A value r is identified as an anomaly if
its distance from µ is larger than the threshold. In the training
phase, we approximate the mean µ and the variance σ2. In the
detection phase, we can specify a threshold t and use σ2/t2 to
denote the threshold.

In our context, x represents CDT or CIP. We substitute t with
the distance between the current r value of CDT/CIP and its
mean µ (i.e., |r − µ|). This gives us an upper bound of the
probability that the feature value deviates from its mean

P (|x − µ| > |r − µ|) < P (r) =
σ2

(r − µ)2
. (5)

The Chebyshev inequality is independent of the underlying
distribution. In practice, when σ2 is large, a very large t is
needed in order to specify a reasonable bound. This may admit
a very skewed CDT/CIP. Because of this, we only apply the
Chebyshev inequality when σ2 is small. In this way, the false
alarms can possibly be reduced [21], [22].

VI. MOBILITY-BASED DETECTION ALGORITHMS

In this section, we detail our mobility-based detection
schemes based on the IBL technique. IBL-based approaches
have been used before to detect malicious users’ activities.
For example, in [26], Lane and Brodley applied IBL-based
approaches to user-oriented anomaly detection at the level of
shell command input. Different from them, our approach is
based on a different network model. In addition, based on our
novel network model, we take into consideration the probability
with which a user takes each path.

A. Feature Extraction

Based on the network model shown in Fig. 1, we extract
(e, t) traversed by the user as the feature. Here, e denotes the
edge [represented by the vertex pair to denote the path between
two vertices, for example, (v1, v4)], whereas t is the time the
individual user takes to traverse the edge. Because each user
has his own driving habit, if there is no traffic jam, it usually
takes each user roughly the same amount of time to traverse a
specific path. Therefore, the sequence of (e, t) could be used
effectively to reflect the user’s movement patterns.
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Fig. 4. Vertex prediction.

B. Data Preprocess

It is shown that mobility prediction can significantly improve
the performance of mobility management, QoS provisioning,
and resource management in cellular mobile networks. Our
work can benefit from existing mobility prediction schemes.
Yet, they have differences. We can use the existing mobil-
ity prediction schemes to help us reduce the false positives.
For example, based on the mobility prediction mechanisms,
we can predict the potential set of routes that the user will
traverse. If the next monitored route is not in this set, we
can raise an alarm immediately and will not go through the
normal-profile detection process. Some very simple prediction
schemes can be used here to avoid the complex modeling
process.

In the example shown in Fig. 4, we suppose that the user is
traveling from v1 and that the highest speed limit is S. Based
on this, after a period of time T , the location of the user will
be limited within the circle, whose radius is equal to S × T .
This indicates the longest distance that the user can drive in the
time period T . Given an example network topology shown in
Fig. 4, the potential set of the next possible vertices is v2. That
is, after T , if the monitored vertices include v3 or v4, we can
directly generate an alarm. Another example could be that if,
1 h ago, the user is in Houston, it is impossible for the user
to be in Los Angeles now. A data preprocessing like this can
generate alarms very quickly and accurately.

C. IBL Approach

In contrast to learning methods that construct a general
description of the subject activities, IBL methods simply store
the training examples. IBL has the advantage that it con-
structs only a local approximation of the subject behavior,
which is suitable when the subject behavior is potentially
varied [27].

One example network model and user-mobility behavior is
shown in Fig. 5(a). In this example, 0, 1, 2,. . . are the vertices.
At each vertex, the user may have different probabilities to
take different paths. Each edge is associated with two numbers.
For example, (1/3, 5) at vertex 0, where 1/3 means that the
probability that the user takes this path when the user at vertex
0 is 1/3, and five means that it takes the user five units of

time to traverse this edge. Fig. 5(b) shows the corresponding
path-probability matrix of this user. Each element at (i, j)
indicates the probability for this user to take the path (i, j) at
vertex i.

A normal profile consists of all the paths traversed by the
user. Each path is associated with a probability. Suppose for a
given path R = {r1, r2, . . . , rn}, where ri denotes an edge in
Fig. 5(a), the probability of each ri is pi, and the probability
of taking path R is calculated as P (R) =

∏n
i=1 pi. Here, we

omit the problem about how to efficiently store the traversed
paths and to retrieve the information to perform anomaly de-
tection. For simplicity, a tree or a matrix can be used in our
context.

D. Similarity Computation

1) Similarity Measure Between Two Equal-Length Paths:
We treat each path as a string consisting of a sequence of
characters and compute the similarity between two paths.
This can help us to determine the anomaly of the observed
movement activities. We first calculate the similarity between
two equal-length paths. Suppose that we have two strings
of equal length l: Xl = (x0, x1, . . . , xl−1) (a test string) and
Rl = (r0, r1, . . . , rl−1) (a string in the normal profile). The
similarity of two characters at location i is defined as

w(Xl, Rl, i) =
{

0, if i < 0‖xi �= ri

1 + w(Xl, Rl, i − 1), if xi = ri.

The similarity between Xl and Rl is then defined as
Sim(Xl, Rl) =

∑l−1
i=0 w(Xl, Rl, i).

This definition of similarity considers the sequential char-
acteristics of the path. The converse measure, the distance
between Xl and Rl, is defined as Dist(Xl, Rl) = Simmax −
Sim(Xl, Rl), where Simmax is the maximum value of the
similarity between Xl and Rl. That is, Simmax = l(l + 1)/2.

By defining the similarity measure this way, the contiguous
matching of characters tends to lead to a relatively large simi-
larity value. The mismatch of one character, particularly in the
middle of compared strings, can greatly reduce the similarity
value. This approach encourages the largest contiguous match-
ing of characters. Fig. 6 shows this when comparing two five-
character strings with one mismatch. This phenomenon will
become more obvious with a larger l.

2) Similarity Measure Between Test String and Normal Pro-
file: A normal profile N consists of a number of paths Ri.
Each path is associated with a probability. It is possible that
the number of routes (i.e., the length of the path) traversed by a
normal user is larger than l. In order to break the collected path
into a set of subpaths of length l, we slide a window of length l
over the path, each time by one position.

For example, given a path R6 = [(e2, t2), (e7, t7), (e1, t1),
(e9, t9), (e8, t8), (e5, t5)] with a probability P . Suppose that
l is set to four. We have the following l-length subpaths:
[(e2, t2), (e7, t7), (e1, t1), (e9, t9)], [(e7, t7), (e1, t1), (e9, t9),
(e8, t8)], and [(e1, t1), (e9, t9), (e8, t8), (e5, t5)]. Each subpath
is associated with a probability Pi.
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Fig. 5. Path-probability matrix. (a) Example network model. (b) Path-probability matrix.

Fig. 6. Example of similarity values.

a) Similarity Measure Between the Test String of Length l
and the Normal Profile: Given a test string X of length l (Xl),
we first compute its distance to N in the following two steps.

1) For an R ∈ N of an arbitrary length L(L > l), we first
compute the similarity between Xl and R

SimR(Xl) = max {Pi ∗ Sim(Xl, Ri)} , ∀Ri of length l

Ri ∈ R, i = 1, 2, . . . , L − l + 1

where Pi is the path probability of Ri.
2) We then compute the similarity between Xl and N

SimN (Xl) = max {SimR(Xl)} , ∀R ∈ N.

b) Similarity Measure Between the Test String of Arbi-
trary Length and the Normal Profile: In order to compute the
similarity between a test string X of arbitrary length D and
the normal profile N , we first break X into l-length substrings
(Xi, Xi+1, . . . , Xi+l−1), i = 1, 2, . . . , D − l + 1. That is, we
slide a window of length l over the test trace, each time by one
position. In a thin way, the original test string X is broken into

(D − l + 1) l-length substrings. We calculate all SimN (Xi)
and compute their average

Sim(X) =
∑D−l+1

i=1 SimN (Xi)
(D − l + 1)

. (6)

Sim(X) will be used as the final similarity between a test
string of arbitrary length and the normal profile N . A threshold
mechanism is then used to decide whether X is normal or not

X =
{

Normal, if Sim(X) ≥ t
Abnormal, if Sim(X) < t.

Here, t is the threshold, a system parameter that needs to be
tuned in the design phase.

E. Implementation Issues

Given a training set T , which is the collection of all training
examples, suppose that the number of vertices [vertices as
shown in Fig. 5(a)] is m and that the number of training
instances is n. In order to construct the path-probability matrix
as shown in Fig. 5(b), we need O(n2) storage and O(mn) time
in the training phase. When n is large, a large data storage is
needed. In addition, in the detection phase, based on the defined
similarity measure, only a single historical sequence is selected
as most similar to the test sequence. A large n will incur heavy
search and comparison operations.

Different strategies can relieve these situations in an oper-
ational setting. For example, given the relatively stable user’s
behaviors, we can apply the principle of locality of reference.
Suppose that a linked list is used to store the path probabilities
shown in Fig. 5(b), we can organize the vertices based on
the decreasing order of the route probability. Suppose that the
collection of routes coming out of a vertex v is {v → v1, v →
v2, . . . , v → vn} and that the corresponding route probabilities
are {p1, p2, . . . , pn}, then we can sort {v1, v2, . . . , vn} based
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on the decreasing order of {p1, p2, . . . , pn}. In this way, search
operations can be effectively reduced.

In addition, if the probability of a corresponding route is
very small and less than a predefined threshold, we can prune
this edge from the storage. A proper threshold value can have
important impacts on the system performance. If the threshold
is small, the effectiveness of the reduction storage is small.
If the threshold is large, the classification performance is im-
pacted. This tradeoff makes the selection of the threshold a site-
dependent issue.

VII. SIMULATION

A. Performance Metrics

We use the following two metrics to evaluate the perfor-
mance of our proposed detection algorithms.

1) False-positive ratio: For the calling activities, false-
positive ratio is measured over normal calls. For the
mobility activities, false-positive ratio is measured over
normal itineraries. Let m denote the number of measured
normal calls (or normal itineraries), and n of them are
identified as abnormal. False-positive ratio is defined
as n/m.

2) Detection ratio: For the calling activities, detection ratio
is measured over abnormal calls. For the mobility activi-
ties, detection ratio is measured over abnormal itineraries.
Let m denote the number of measured abnormal calls
(or abnormal itineraries), and n of them are detected.
Detection ratio is defined as n/m.

False-positive and detection ratios are the two most popular
metrics in measuring the performance of IDSs. In threshold-
based anomaly detection mechanisms, with the adjustment
of the threshold, false-positive and detection ratios tend to
decrease or increase at the same time. This reflects the
tuning process in IDSs. In this respect, receiver-operating-
characteristic (ROC) curves can plot the tradeoff between false-
positive and detection ratios. In our simulation, we introduce
the concept of degree of anomaly, which adds one more factor
in measuring the performance. To make the results better plot-
ted, we do not adopt the ROC curves.

B. Data Sets

1) Data Sets of Calling Activities: For the training data
regarding a user’s calling activities, we assume that the CDT
follows the gamma distributions because they reflect the emerg-
ing services and are more flexible than the exponential distrib-
ution [14]. We also assume that the CIP follows the gamma
distributions. Gamma distribution has the pdfs γ = f(x|a, b) =
(1/baΓ(a))x(a−1)ex/b. Here, Γ is the gamma function defined
by the integral Γ(a) =

∫ ∞
0 e−tta−1dt, where a is the shape

parameter. b is the scale parameter.
One of the essential assumptions in the whole intrusion

detection research is that the normal and the malicious ac-
tivities should demonstrate distinct behaviors. In our context,
we use D to denote the difference between the normal and
the abnormal behaviors. Specifically, we use the difference

between the location parameter of the normal profile’s gamma
distribution and the location parameter of the abnormal profile’s
gamma distribution to represent D. Let µn denote the location
parameter of the normal profile’s gamma distribution and µa

denote the location parameter of the abnormal profile’s gamma
distribution. Then, we have D = |µn − µa|.

Intuitively, the larger the D is, the more distinct the normal
and abnormal profiles are and the better performance the detec-
tion algorithm can achieve. It is worth noting that when D is
too small, the distinction between the normal and the abnormal
profiles is so small that it is very difficult to tell them apart.
In this simulation, we generate normal and abnormal profiles
using different D values as the training data.

Given a normal and an abnormal profile at a given D,
we also generate test data to test the performance of our
detection algorithm. It is very normal that user’s behaviors
may demonstrate some variations. Therefore, we use the dif-
ference between the training data’s location parameter and
the test data’s location parameter to represent the users’ be-
havior variation. Let µtrain denote the location parameter of
the gamma distribution of the training data and µtest denote the
location parameter of the gamma distribution of the test data. In
order to generate the user test data whose distance is d from the
training data, we set d = |µtrain − µtest|.
2) Data Sets of Mobility Activities: We use the example

network model shown in Fig. 5(a) to generate normal users’
behaviors. To test the performance of our proposed schemes,
we first introduce a concept—the degree of anomaly—which
reflects the degree of variation of a user’s mobility profile.
In our context, the degree of anomaly could be defined as
the percentage of the number of new vertices (vertices not
existing in the normal profile) over the number of vertices in
the normal profile. In the following simulations’ results, we
use the number of new vertices to represent the degree of
anomaly.

We gradually increase the number of new vertices not in-
cluded in Fig. 5(a) in order to generate a wide variety of test
data. The more the number of new vertices not included in
Fig. 5(a), the more abnormal the user’s mobility pattern is.
For each degree of anomaly, we use the corresponding set of
vertices to randomly generate a path set as the test data, which
corresponds to the user’s behavior at this degree of anomaly.
These test data are then used to measure the false-positive and
detection rates.

C. Bayes-Based Detection Algorithms

1) A Posteriori Probability Distance: Given an observation
x, we first measure the distance of its a posteriori probability
under different classes following (1). Because p(x) is unim-
portant as far as making a decision is concerned, we measure
the distance as |p(x|ω1)P (ω1) − p(x|ω2)P (ω2)|, as shown
in Fig. 7.

First, when d is small, the distance decreases with the in-
crease of d. This is because, when d increases, the test data
are closer to abnormal data. This leads to the decreases of the
distance, as shown in Fig. 7. This also leads to the changes of
false-positive and detection ratios, as shown in Figs. 8 and 9.
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Fig. 7. A posteriori probability distance.

Fig. 8. False-positive ratio at different calling activities—Bayesian deci-
sion rule.

Fig. 9. Detection ratio at different calling activities—Bayesian decision rule.

Second, when D is small and when d increases to some
value, the distance increases. This is because we measure the
absolute value. When d is large enough, the test data become
closer to the abnormal data. Therefore, the distance decreases.

Third, we can also observe that if d stays the same and D
increases, the distance increases. This is also what we expect.
A larger D means a clearer separation between the normal and
abnormal behaviors in the training data. This contributes to the
increase of the distance.
2) False-Positive Ratio: Simulation results of the false-

positive ratio of the Bayesian detection algorithm are shown
in Fig. 8. We have the following observations. First, when
the normal and abnormal behaviors have a large distance (for
example, D = 10), the false-positive ratio is very low, even if
the user demonstrates a relatively large variation. This will lead
to a very small false-positive ratio.

Fig. 10. Similarity value of test string to normal profile.

Second, given the same D, with the increase of d, we have an
increasing false-positive ratio. This is what we have expected.
With the increasing d, the user’s behaviors tend to demonstrate
a large deviation. It is very normal that false-positive ratio
increases.

Third, given the same d, with the decrease of D, the false-
positive ratio increases. This is because, with the decrease of the
D, the users’ normal and abnormal behaviors tend to have more
overlap. This leads to an increase of the false-positive ratio.
3) Detection Ratio: Simulation results of the detection ratio

of our algorithm are shown in Fig. 9. We have the following
observations. First, when the normal and abnormal behaviors
have a large distance (for example, D = 10), the detection ratio
is very high, even if the user demonstrates a relatively large
variation. This leads to a very high detection ratio.

Second, given the same D, with the increase of d, we have
a decreasing detection ratio. This is what we have expected.
With the increasing d, the users’ behavior tends to demonstrate
a large deviation. It is very normal that the detection ratio
decreases.

Third, given the same d, with the decrease of D, the detection
ratio decreases. This is because, with the decrease of the D,
the users’ normal and abnormal behaviors tend to have more
overlap. This leads to a decrease of the detection ratio.

D. IBL-Based Detection Algorithms

1) Similarity: Given a test string X , we compute its similar-
ity value to the normal profile based on (6). This gives us ideas
about how the similarity value changes at a different degree of
anomaly. The result is shown in Fig. 10.

First, when l is large, with the increase of the degree of
anomaly, the similarity value decreases. This is because when
l is large, it is easier to have a character mismatch when the
degree of anomaly becomes larger.

Second, when l is small, we do not observe much difference
of similarity values. This demonstrates the impact of l on the
similarity value of the test string. We can also see that, if we
fix the degree of anomaly, with the increase of l, the similarity
value increases.
2) False-Positive and Detection Ratios: Simulation results

of the false-positive and detection ratios of the IBL-based
detection algorithms are shown in Figs. 11 and 12, respectively.
Let l represent the length of consecutive edges.
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Fig. 11. False-positive ratio at different mobility activities—IBL. (a) 1 = 1. (b) 1 = 4. (c) 1 = 6.

Fig. 12. Detection ratio at different mobility activities—IBL. (a) 1 = 1. (b) 1 = 4. (c) 1 = 6.

First, if l is too small (for example, l = 1), considering a
reasonable false-positive ratio, detection ratio will be too low.
A small l does not take into consideration the sequential feature
of users’ movement patterns. This will lead to a low detection
ratio.

Second, if l is too large (for example, l = 6), considering a
reasonable detection ratio, false-positive ratio will be too high.
This is because the path probability will be small given a very
large path length l, thus decreasing the similarity of the test
path. This leads to the increase of the false-positive ratio.

Third, given a reasonable l (for example, l = 4) and a suitable
threshold, we can achieve a reasonable tradeoff between the
false-positive and detection ratios. With the increase of the
threshold, we observe an increase of the false-positive and
detection ratios. This is a general trend we also observe when l
is one and six.

VIII. CONCLUSION AND FUTURE WORK

In this paper, motivated by the observations that most users
demonstrate certain regularities in their activities, we aim at
constructing an end user’s profile for anomaly detection in
wireless networks. To utilize users’ calling activities, we for-
mulate the intrusion detection problem as a multifeature two-
class pattern-classification problem and apply the Bayesian
decision rule to the collected data. To exploit movement pat-
terns demonstrated by mobile users, we first propose a realistic
network model integrating geographic road-level granularities.
We then apply an IBL technique to construct mobile users’
movement patterns. We also perform simulations to evaluate
the effectiveness of these two algorithms. Simulation results

demonstrate that under certain properly tuned parameters, both
algorithms can achieve desirable performance.

It is obvious that the end user’s behavior is very complex and
changing all the time. We plan to consider more features in the
future to make our system more general and robust. We also
plan to further revise our algorithms to address the problem
incurred by complex users’ behaviors. One more important
work is to test the proposed algorithms using real-world data.
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