
406 IEEE SYSTEMS JOURNAL, VOL. 8, NO. 2, JUNE 2014

Differentiated Virtual Passwords, Secret Little
Functions, and Codebooks for Protecting Users

From Password Theft
Yang Xiao, Senior Member, IEEE, Chung-Chih Li, Ming Lei, and Susan V. Vrbsky

Abstract—In this paper, we discuss how to prevent users’ pass-
words from being stolen by adversaries in online environments
and automated teller machines. We propose differentiated virtual
password mechanisms in which a user has the freedom to choose
a virtual password scheme ranging from weak security to strong
security, where a virtual password requires a small amount of
human computing to secure users’ passwords. The tradeoff is
that the stronger the scheme, the more complex the scheme
may be. Among the schemes, we have a default method (i.e.,
traditional password scheme), system recommended functions,
user-specified functions, user-specified programs, and so on. A
function/program is used to implement the virtual password
concept with a tradeoff of security for complexity requiring a
small amount of human computing. We further propose several
functions to serve as system recommended functions and provide
a security analysis. For user-specified functions, we adopt secret
little functions in which security is enhanced by hiding secret
functions/algorithms.

Index Terms—Codebooks, differentiated virtual passwords,
key logger, phishing, secret little functions, shoulder-surfing.

I. Introduction

TODAY, THE Internet has entered into our daily lives as
more and more services have been moved online. Besides

reading the news, searching for information, and other risk-
free activities online, we have also become accustomed to
other risk-related work, such as paying using credit cards,
checking/composing emails, online banking, and so on. While
we enjoy its convenience, we are putting ourselves at risk.
Most current commercial websites will ask their users to input
their user identifications (IDs) and corresponding passwords
for authentication. Once a user’s ID and the corresponding
password are stolen by an adversary, the adversary can do
anything with the victim’s account, which can lead to a disaster
for the victim. As a consequence of increasing concerns over
such risks, protecting users’ passwords on the web has become
increasingly critical.

Manuscript received June 21, 2011; revised October 24, 2011 and December
8, 2011; accepted December 31, 2011. Date of publication February 15, 2012;
date of current version May 22, 2014. This work was supported in part by
the National Science Foundation, under Grants CCF-0829827, CNS-0716211,
CNS-0737325, and CNS-1059265.

Y. Xiao and S. V. Vrbsky are with the Department of Computer Sci-
ence, University of Alabama, Tuscaloosa, AL 35487 USA (e-mail: yangx-
iao@ieee.org; vrbsky@cs.ua.edu).

C.-C. Li is with the School of Information Technology, Illinois State
University, Normal, IL 61790 USA (e-mail: cli2@ilstu.edu).

M. Lei is with Oracle Corporation, Redwood City, CA 94065 USA.
Digital Object Identifier 10.1109/JSYST.2012.2183755

The secure protocol SSL/TLS [1] for transmitting private
data over the web is well-known in academic research, but
most current commercial websites still rely on the relatively
weak protection mechanism of user authentications via a
plaintext password and user ID. Meanwhile, even though
a password can be transferred via a secure channel, this
authentication approach is still vulnerable to the following
attacks: 1) in phishing attacks, phishers attempt to fraudulently
acquire sensitive information, such as passwords and credit
card details, by masquerading as a trustworthy person or
business in an electronic communication [2]; 2) Password
Stealing Trojan programs contain or install malicious codes.
Examples include: a) key loggers capturing keystrokes in
the machine; and b) Trojan Redirectors redirecting end-users
network traffic to a desired location [5]; and 3) Shoulder
Surfing steals others’ sensitive personal information by looking
over victims’ shoulders [12], [16], [20] or capturing users’
inputs and screens by taking pictures and videos using cameras
and video recorders, respectively. Many schemes, protocols,
and software have been designed to prevent users from some
specified attacks. However, to the best of our knowledge, there
is not a scheme which can defend against all the attacks listed
above at the same time.

In this paper, we present a password protection scheme
that involves a small amount of human computing in an
Internet-based environment or a ATM machine, which will
be resistant to phishing scams, Trojan horses, and shoulder-
surfing attacks. We propose a virtual password concept in-
volving a small amount of human computing to secure users’
passwords in online environments. We propose differentiated
security mechanisms in which a user has the freedom to
choose a virtual password scheme ranging from weak security
to strong security. The tradeoff is that stronger schemes are
more complex. Among the schemes, we have a default method
(i.e., traditional password scheme), a system recommended
function, a user-specified function, a user-specified program,
and so on. A function/program is used to implement the virtual
password concept by trading security for complexity by requir-
ing a small amount of human computing. We further propose
several functions to serve as system recommended functions
and provide a security analysis. We analyze how the proposed
schemes defend against phishing, key logger, shoulder-surfing,
and multiple attacks. In user-specified functions, we adopt
secret little functions in which security is enhanced by hiding

1932-8184 c© 2012 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html



XIAO et al.: DIFFERENTIATED VIRTUAL PASSWORDS, SECRET LITTLE FUNCTIONS, AND CODEBOOKS 407

secret functions/algorithms. To the best of our knowledge, our
virtual password mechanism is the first one which is able to
defend against all three attacks. We further propose a scheme
to adopt μTESLA to be used for re-keying and to defend
against phishing.

The proposed functions include secret little functions and
two other schemes called codebook and reference switching
functions. Our objective is to produce a function achieving
both: 1) ease of computation; and 2) security. However, since
simplicity and security conflict, it is difficult to achieve both.

The idea of this paper is to add some complexity, through
user computations performed by heart/hand or computation
devices, to prevent the three kinds of attacks. There is a
tradeoff of how complex the computation by the users can
be. One goal is to find an easy to compute but secure scheme
for computing.

We believe that, for some sensitive accounts such as online
bank accounts and online credit card accounts, users are likely
to choose additional complexity which requires some degree of
human computing in order to make the account more secure.

The rest of this paper is organized as follows. We describe
related work about password protection in Section II. In
Section III, we propose the idea of the virtual password,
differentiated security mechanisms, and user-specified
functions or programs, in which we propose the concept of
secret little functions. Two functions (the codebook approach
and reference switching approach) are proposed in Section
IV. We provide some quantitative analysis in Section V. In
Section VI, we describe implementation issues of our scheme.
Finally, we conclude our paper and describe our future work in
Section VII.

II. Related Work

How to shield users’ passwords from being stolen by adver-
saries is not a new topic, but it is always important because
adversaries keep inventing more and more advanced attacks
to break the current defense schemes. This results in more
research on protecting users from such attacks. In this section,
we briefly introduce the previous work on defending against
user password-stealing attacks for the three major categories.

Phishing attacks are relatively new but very effective. There
are two typical types of phishing. First, to prevent phishing
emails [27], [29], [30], a statistical machine learning technol-
ogy is used to filter the likely phishing emails; however, such
a content filter does not always work correctly. Blacklists of
spamming/phishing mail servers are built in [31] and [32];
however, these servers are not useful when an attacker hijacks
a virus-infected PC. In [11], [24], and [25], a path-based veri-
fication was introduced. In [14], a key distribution architecture
and a particular identity-based digital signature scheme were
proposed to make email trustworthy. Second, to defend against
phishing websites, the authors in [21] and [33] developed some
web browser toolbars to inform a user of the reputation and
origin of the websites which they are currently visiting. In
[6]–[10], the authors implemented password hashing with a
salt as an extension of the web browser [6], [9], [10], a web
proxy [13], or a stand-alone Java Applet [15]. Regardless of

the potential challenges considered in an implementation, such
password hashing technology has a roaming problem because
not every web browser installs such an extension or sets the
web proxy. Another more important challenge is that more
web browsers need to be designed in which designers are not
reluctant to include specified extensions for each other.

Unlike phishing, malicious Trojan horses, such as a key
logger, are not attacks, and sophisticated users can avoid them.
Such programs are also easy to develop [17], and there is
a great deal of freeware that can be downloaded from the
Internet to prevent them. You may be advised to install an anti-
spyware or anti-virus software package on your machine or to
set up a firewall to block suspicious packages from the outside.
However, in the event you are traveling to some place without
carrying your own computer and you have to seek help from
an Internet cafe to access the Internet, do you want to trust the
computers in the Internet cafe? In [17], the author presented
a tricky method which can confuse a keylogger, which works
as follows. Instead of typing your whole password into the
login field, the user changes focus outside the login form and
types some random characters between any two successive
password characters. However, this trick does not shield the
user from keylogger attacks. It only makes it slightly more
difficult because it is very easy to record all the keys, mouse
events, and applications of the focus. The authors in [18]
and [19] used a virtual pad for the login system, which
allows a user to click the virtual keyboard on the screen
instead of typing on the physical keyboard, but such a virtual
keyboard faces some of the same problems as above (i.e., an
adversary can record all the mouse events with a combination
of screen snapshots to figure out what the user clicks on
the screen).

Alphanumeric password systems are easily attacked by
shoulder-surfing, in which an adversary can record the user
motions by a hidden camera when the user types in the
password. In [22], the authors adopted a game-like graphi-
cal method of authentication to combat shoulder-surfing; it
requires the user to pick out the passwords from hundreds of
pictures, and then complete rounds of mouse-clicking in the
Convex Hull. However, the whole process needs the help of a
mouse and it takes a long time. In [23], the authors proposed
a scheme to ask a user to answer multiple questions for each
digit. In this way, it is only somewhat resistant to shoulder-
surfing because, if an adversary catches all the questions,
then they will know what the password is. In [23], a game-
based method was designed to use cognitive trapdoor games to
achieve a shield for shoulder-surfing. The author in [26] filed
a patent to allow a user to make some calculations based on a
system generated function and random number for the user to
prevent password leaking. However, the scheme in [26] is not
anti-phishing and the password can be stolen if an adversary
uses a camera to record all the screens of the system and
motions of the victim.

Note that using SSL/TLS in websites could not prevent key
logger attacks.

In the traditional challenge-response protocol: 1) a user
sends his/her identity to the server, who generates and returns
a random number r, as the challenge; and 2) the user’s



408 IEEE SYSTEMS JOURNAL, VOL. 8, NO. 2, JUNE 2014

response is f (r, h(P)), where f () is a function and h() is the
hash function, and P is the password. However, the above
challenge-response protocol suffers phishing attacks, Password
Stealing Trojan programs (such as key loggers and Trojan
Redirectors), and Shoulder Surfing. For example, both key
logger and Shoulder Surfing can steal user’s password. A
zero-knowledge password is a way to verify that a user has a
certain secret information. However, such secret information
once typed in the system suffers key logger and Shoulder
Surfing attacks.

In the previous sections, we have briefly introduced some
schemes without including methods which need hardware
support. None of the schemes above can prevent phishing,
Trojan horse, and shoulder-surfing at the same time.

A one-time password (OTP) does not use a static pass-
word, and therefore can prevent replay attacks. There are
several approaches to generate and distribute OPTs: 1) a
time-synchronization method; 2) a mathematical algorithm to
generate a password based on old ones; and 3) a mathematical
algorithm to generate a challenge [36], [37]. In the time-
synchronization method, a password is generated based on the
current time, while the server and the client programs need
time-synchronization via a physical electronic token. In the
second method, OPTs must be used by a predefined order
such as using a one-way hush function [36], [37]. In the
third method, challenge-response can be done by a physical
token. Therefore, an OPT method needs a electronic token,
mobile phone, or out-of-band channel such as SMS messaging
[36]. The idea of our proposed virtual password is similar to
OPT. However, the approaches are different. For example, in
the proposed secret little function approach, the secret little
function is built between the server and the user (a human
being), whereas in a OPT method, communications are done
between the server and a physical device (either a token, a
computer, or a cellular phone). Also, a OPT assumes that the
physical device is secure and not compromised; whereas our
secret little function method does not need such an assumption.
For example, when a user on a business trip uses a un-trusted
machine at an Internet Cafe, or a ATM machine, a OPT method
becomes difficult to used since the physical device (token
or cellular phone) is difficult to connect via the un-trusted
machine or the ATM machine. But our method can be easily
and safely used.

Note that an early short version of this paper was presented
in the conference [35]. There is also some related work for
password and authentication methods [38]–[68].

III. Differentiated Virtual Passwords and

Secret Little Functions

In Section III-A, we propose the idea of the virtual pass-
word. In Section III-B, we propose differentiated security
mechanisms in which a user has the freedom to choose
a virtual password scheme ranging from weak security to
strong security. In Section III-C, we propose user-specified
functions or programs, in which we propose the concept of
secret little functions. We discuss virtual password function
with a helper-application in Section III-D. We discuss virtual

password functions without a helper-application in general in
Section III-E. We present μTESLA authentication in
Section III-F

A. Virtual Password

To authenticate a user, a system (S) needs to verify a user
(U) using the user’s password (X) and ID (also denoted as U)
which the user provides. In this procedure, S authenticates U

by using U and X, which is denoted as: S → U: U, X. Both
U and X are fixed. It is reasonable that a password should be
constant so that it can be easily remembered. However, the
price of being easily remembered is that the password can be
stolen by others and then used to access the victim’s account.
At the same time, we can not put X in a randomly variant
form because it would be impossible for a user to remember
the password. To confront such a challenge, we propose a
scheme using the new concept of virtual password.

A virtual password is a dynamic password that is generated
differently each time from a virtual password scheme and then
submitted to the server for authentication. A virtual password
scheme P is composed of two parts, a fixed alphanumeric X

(i.e., the real password, also called the hidden password) and a
function F from the domain ψ to ψ, where the ψ is the letter
space which can be used for passwords. Since we call P =
(X, F ) a virtual password scheme, we call F a virtual password
function (VPF). The result (denoted as V ) of the VPF is called
a virtual password, and F may have some hidden parameters,
H , which are the secrets between the server and the user. If
this is the case, we denote F with FH (...). Note that the VPF
can be a secret between the server and the user. Let X =
x1x2...xn denote a vector standing for the hidden password,
where xi (i = 1...n) is a digit, and n is the length of the vector.
Let R = r1r2...rn denote the random number provided by the
server, also called the random salt, and prompted in the login
screen by the server. V = v1...vn is the virtual password used
for authentication. The user input includes (U, V ), where U is
the user ID. On the server side, the server can also calculate V

in the same way to compare it with the submitted password.
We use V = FH (X, R) or FH (xi, ri) = vi interchangeably in
the rest of this paper.

It is easy for the server to verify the user if F is a bijective
function. If F is not a bijective function, it is also possible to
allow the server to verify the user as follows. The server first
finds the user’s record from the database based on the user’s
ID (i.e., U), then it computes V and compares it with the one
provided by the user. A bijective function makes it easier for
the system to use the reverse function to deduce F ’s virtual
password. Therefore, we do not assume that F is a bijective
function.

The user should be free to pick the hidden password.
We propose a differentiated security mechanism in the next
subsection to allow the user to choose a VPF.

B. Differentiated Security via a VPF

We have introduced the concept of the virtual password;
next, we detail how to apply it in an Internet-based envi-
ronment. We propose a differentiated security mechanism for



XIAO et al.: DIFFERENTIATED VIRTUAL PASSWORDS, SECRET LITTLE FUNCTIONS, AND CODEBOOKS 409

Fig. 1. Screenshot of user registration: Step 1.

system registration in which the system allows users to choose
a registration scheme ranging from the simplest one (default)
to a relatively complex one, where a registration scheme
includes a way to choose a virtual password function. The
more complex the registration, the more secure the system is,
and the more user involvement is required. A screenshot of
the first step of the proposed registration is shown in Fig. 1.
Whether a virtual password scheme is used or not, the user is
required to input the read password and ID in Step 2 of the
registration.

In Fig. 1, a user has the freedom to choose a default
approach in the traditional way or a more complex scheme
as proposed in this paper. A user can choose a recommended
virtual password function, define his/her own virtual password
function, or even define a common program to share between
the user and the server to calculate the password.

1) The system recommended approach is that, after the
system receives a registration request, it automatically
generates a function. The users do not have to provide
extra information about the function to the server except
for some necessary parameters, called hidden parameters
(H).

2) The user specified function approach is the one in which
users themselves can choose any function they like.
However, such freedom is based on the assumption that
the user has some basic knowledge about VPFs, which
can be introduced by an online introduction.

3) The indirectly-specified approach, instead of letting ei-
ther the user or the server make the full decision, allows
a user to specify the desired security degree. Then the
server will assign a function according to that degree.

4) An extreme scheme is that the user can even provide a
program in C or Java instead of a function. This requires
a very advanced user.

Note that, except for the default approach, either human
computing is involved or a handhold device (or a computer)
which can be programmed to compute the virtual password
is needed. We could develop a smart application to make the
complex calculation for the user which can be run on the
mobile device, such as a cellular phone, PDA, smart phone,
iphone, personal computer, or programmable calculator, to
relieve the user from complicated calculations and to overcome

any short-term memory problem. If such a helper-application
is involved, we should make sure that the helper-application
itself is unique to each user account and only works for the
corresponding user account.

Regardless of the approach chosen, a user’s registration
in the system is similar (i.e., the user submits a user ID
and a fixed password). The one difference from a traditional
approach is that in the virtual password scheme, a VPF must
be set during the registration phase.

The server then delivers this function information to the
user via some channels, such as displaying it on the screen or
in an email. The user needs to either remember this function
together with the password they have chosen or to save them in
disks or emails. The user-specified password and the system-
generated function are combined to form a virtual password
scheme.

We also note that a small amount of human-computing is
involved in the authentication process. We have to choose
a VPF to make the calculation as simple as possible if the
helper-application is not used. A user has to remember both
the hidden password and the function (i.e., VPF), and as a
result more effort is required to remember them. However, the
virtual password will be resistant to a dictionary attack, mostly
because users like to create a password which is either related
to their own name, date of birth, other simple words, and so on.

In a traditional password scheme, users can change their
password. This is also true in our virtual password scheme.
Unlike the traditional scheme, users can change the hidden
password, the VPF, or both.

C. User-Specified Functions/Programs

The strongest security approaches let the user define a user-
specified function or program. Since the chosen function is
only known by the server and the user and the key space of
functions are infinite with high-order, these approaches are
very secure for even simple functions.

In many classical ciphers, secret encryption algorithms are
common. In modern ciphers, encryption algorithms are open
to the public but keys of these algorithms are kept secret.
One reason that modern ciphers seldom choose secret encryp-
tion algorithms is that secret encryption algorithms prevent
communication among parties such as commercial products,
networking protocols, and so on. Therefore, the approach in
which only keys are kept as secrets (small data) and algorithms
(large programs) are open to the public for implementation is
very popular in modern ciphers.

The reason for using secret encryption algorithms (i.e.,
user-specified VPFs) is that secrets are very personal to a
particular user and should not be known by others except
the server. On the other hand, for example, a wireless local
area network (WiFi) needs open encryption algorithms to
allow products from different companies to communicate with
each other. Otherwise, one company’s WiFi card could not
communicate with that of another company. However, in our
application, communication is only between a user and a
server so that it is good to use secret encryption algorithms,
since secret encryption algorithms enhance security by hiding
the algorithms/functions. Therefore, we claim that, for a very



410 IEEE SYSTEMS JOURNAL, VOL. 8, NO. 2, JUNE 2014

personal communication, such as one between a user and a
server, it is acceptable to use secret encryption algorithms.
The function space is infinite with high-order.

Some people may be concerned that trained professionals
cannot provide an easy and secure function, so most users may
not either. This concern is not actually necessary. Since even
a very simple function will be secure because the attackers
do not know what kind of functions the user chose (i.e.,
functions are kept as secrets instead of keys and the resulting
function space is infinite with high-order). Examples of simple
functions can be as follows:

1) flip one bit in the password;
2) flip one digit in the password;
3) add one to each odd digit and minus one in each even

digit;
4) the first digit of the password is tripled; 100x+birthdate,

where x is the real password in an integer form trans-
ferred from ASCII codes;

5) reversing even bits of the real password in a binary form;
6) a secret function x+a, where a is a constant, and x is the

fixed password;
7) a secret function x-a, where a is a constant, and x is the

fixed password;
8) a secret function a*x, where a is a constant, and x is the

fixed password;
9) add an additional constant digit/character at a fixed

place;
10) a secret linear function [a(x+y)+c] mod (m), where a

and c are constants, y is a random number generated by
the server, and x is the fixed password;

11) and so on.
User specified functions can be infinite. Since attackers do

not know the function forms (i.e., secret encryption algo-
rithms), these simple functions are very secure. Otherwise,
it would be easy to attack these functions. Note that user-
specified functions do not need to be bijective.

We call these simple and secure functions secret little
functions. They are useful in our context. One problem is that
extra effort is required in programming the function into the
server upon the creation of an account, so human intervention
that may be needed.

Another constraint is that secret little functions must use the
random number provided by the server; otherwise, it would
still be subject to Key-logger attacks since the attackers do
not need to know the function but can simply input the same
capture inputs again to gain access.

Advanced users can also define a program to be used.
As for the server storage, assuming that each VPF needs

0.2K storage space, the total storage space for 10 000 user
accounts registered on the server is 2M, which is reasonable.

Note that the secret little function is that the function F

defined in P = (X, F ).

D. VPF With a Helper-Application

If a helper-application is available for the user, the user
needs to type the random salt into the helper-application;
subsequently, the virtual password is generated by the helper-
application. The user then types the generated virtual password

in the login screen. In this way, the extra time required is very
small and the precision will be 100% correct as long as the user
types the correct random salt displayed on the login screen.

This works when the user has a mobile device, such as
a cellular phone, PDA, smart phone, or iphone. However,
such mobile devices are not able themselves to communicate
with the server to which the user wants to login. No matter
how complex the VPF is, the helper-application can always
generate the correct virtual password for the user. This case is
the most sophisticated one, and it is also the most convenient
approach for the user.

For password changing, the user only needs to get a
new helper-application after the password change instead of
remembering all the changed parts of the virtual password.
Note that the server must make the corresponding changes
too.

A one-way hash function and many other functions (such
as known encryption algorithms) can serve as VPFs.

If we further assume that the helper-application can commu-
nicate with the server, the user only needs to type the random
salt in the helper-application, and then the rest of the work
is done by the helper-application. The helper-application can
generate the virtual password and submit the login request
associated with the user account information, which can be
built into the helper-application for the corresponding user.
For password changing, the helper-application communicating
with the server is a better way to change passwords and make
them more secure (i.e., the helper-application can periodically
make the password change request to server and update
the corresponding virtual password built into the helper-
application). The whole process can be completely transparent
to the user.

E. VPF Without a Helper-Application

If there is no helper-application for a user, the user needs to
calculate the virtual password from the VPF with the inputs,
the random salt, and the hidden password. The whole login
process may take a little bit longer because it requires the
user to perform some calculations. This must work for the
user who has no mobile device, so the VPF should not be too
complicated for human computing.

Password changing in VPF is similar to traditional password
changing. The user can choose a new password, which is the
hidden password, a new VPF, or both. After such changes, the
user needs to remember the new virtual password.

The VPF plays a critical role in the virtual password,
especially when the user chooses the option of “Use a rec-
ommended virtual password function” in Fig. 1. There are an
infinite number of VPFs, so designing an appropriate function
is very critical to the success of our scheme.

In order to defend against phishing, key-loggers, and
shoulder-surfing while the system is authenticating the user,
this function should meet the following criteria.

1) The function should have some random input provided
by the server, which then allows the users to type in
different inputs each time they log in the system. This
ensures that the key logger can not steal the password



XIAO et al.: DIFFERENTIATED VIRTUAL PASSWORDS, SECRET LITTLE FUNCTIONS, AND CODEBOOKS 411

because the real password is not typed and the typed
inputs change each time.

2) The function should be easy for the users. To make the
system more secure, we could increase the complexity
of the VPF. However, the resulting function may be
very difficult to remember or utilize. The objective is
to design less complex but secure VPFs.

3) The function should be unobservable (i.e., the observed
password the user types in for the login session does not
disclose hidden secrets), so that adversaries cannot use
the stolen information to log into the system.

4) The function should be unsolvable (i.e., the adversaries
should not be able to solve the function with the poten-
tial information they are able to obtain).

These four requirements are used to guide us to design the
appropriate VPFs. There are many functions which meet all
the requirements listed above.

F. μTESLA Authentication

In this subsection, we propose a scheme to adopt μTESLA
to be used for re-keying and defending against phishing.

In the previous sections, we discussed how to use the
virtual password to defend against phishing, key loggers, and
shoulder-surfing. In this section, we propose another scheme
to guard against phishing attacks by allowing the user to
authenticate the server and adopting μTESLA to provide
freshness of the server key. The purpose of this scheme is that
it can be used for authentication of the server before re-keying
of the previous scheme. This μTESLA scheme can be very
useful when the web browser or other client side applications,
such as the helper-application in our virtual password, can have
an authentication function implemented. This scheme can also
be used to protect from phishing via emails.

μTESLA [34] is an authentication scheme which was origi-
nally designed for sensors to authenticate a broadcast message
sender in a sensor network based on a public one-way hash
function F .

We could use the methodology to defend against phishing
attacks or to authenticate the server before re-keying. We
adjust it with the assumption that the server side and client
side will choose the same public hash function; we discuss
how it works in the registration phase, sign-on phase, and
password change phase.

In the registration phase, upon a registration request, in
addition to preparing the general password, user id, and
other information, the server needs to generate a chain key
Km, ..., K0 by randomly choosing the Km and then producing
the Kn−1 = F (Kn) where n = 0, 1, ..., m. The server will then
pass the K0 to the client.

In the sign-on phase, once the sign-on request arrives at
the server side, the server presents the sign on screen to the
clients who need to provide the authentication code, which
will be encrypted by the latest key. For example, the nth
time the user signs in to the system, the server produces the
authentication code as EKn−1 (Kn) and passes this to the client.
When the client receives the package, they first need to decrypt
the authentication code with the current key (i.e., Kn−1) then
to get the Kn and then use this Kn to verify this sign-on screen

is from the right server in the following way: if F (Kn) = Key,
it is verified and the currently held key is updated to be Kn;
otherwise, it is denied.

In this way, the client can verify the server and be protected
from phishing attacks because the phisher has no knowledge
of the K0, ..., Km and therefore is not able to fake the authenti-
cation code. Furthermore, the server should use the latest used
key to encrypt the current key, since, if the authentication code
is not encrypted, the phisher could pretend that they are clients
and try to log in to the system. The server then presents the
login screen along with the new authentication code Kn, which
makes if difficult for the phisher to fake a login screen with
the correct authentication code to lure the client.

Because the number of keys from K0 to Km is finite, the
server will eventually use up all the authentication codes, even
if we choose a very large value of m. The server and client
should build a scheme to regenerate their authentication code,
which we refer to here as re-keying of the authentication key
refreshes. This is an easy job and can be conducted once both
the client and the server verify each other. The server needs to
generate a new chain of keys, as it did in the user registration
phase, and to deliver the first of the keys to the client.

This μTESLA scheme will work effectively to shield the
clients from phishing attacks, and it could be used together
with our virtual password scheme to protect the user’s pass-
word.

IV. Codebook and Reference Switching

Here, we propose two approaches to the virtual password
function. They are not perfect, but they are acceptable in the
hostile password phishing environment. For the first approach,
some small codebooks will be needed. A codebook should
be small enough to be printed on a pocket-sized card, stored
in a saved e-mail, or stored in a PDA or cell phone for the
user to carry. It is not impossible but would be unrealistic
to ask the user to remember the entire codebook. For the
second approach, we design a function that is easy to compute
with paper-and-pencil or a nonscientific calculator. However,
its inverse function should be difficult to compute without
knowing some hidden parameters. Our ultimate goal is to
design a zero-knowledge interactive proving protocol, but this
is impossible given the constraints mentioned earlier. Thus,
our next ideal functions would be those that do not give away
enough information to significantly compromise the user’s
account.

A. Codebook

We first assume that our server has sufficient computing
power to run a cryptographically secure random number
generator (RNG). This requirement is necessary to protect the
whole system; in case a user loses their codebook, the system
will not be compromised and the user can easily ask for a new
codebook without changing the parameters of the RNG. Note
that linear congruential generators is not as cryptographically
secure RNG.

Our first codebook is rather straightforward. In the setup
session, the user decides the length of the password, n. The



412 IEEE SYSTEMS JOURNAL, VOL. 8, NO. 2, JUNE 2014

server then gives n 10-digit random numbers. Suppose that we
are doing this to protect a 4-digit PIN (i.e., n = 4). The sever
outputs four random numbers, R0, R1, R2, and R3, with each
having ten digits. Let r(i,0), r(i,1), r(i,2), ..., r(i,9) denote the ten
digits of Ri. The user’s codebook is given as follows:

r(0,0) r(0,1) r(0,2) . . . x(0,9)

r(1,0) r(1,1) r(1,2) . . . x(1,9)

r(2,0) r(2,1) r(2,2) . . . x(2,9)

r(3,0) r(3,1) r(4,2) . . . x(3,9)

It is up to the user to decide how to store or memorize the
codebook. To login to the system, the system will present a
4-digit random number R = abcd, where each letter represents
a digit. The virtual password the user must key in would be
v(i,a)v(i,b)v(i,c)v(i,d).

For security analysis, we consider the phishing attack be-
cause it is the most aggressive attack in which the adversary
can control the random number R. For each attack, the phisher
will provide a fake random number R to the victim. If
successful, the adversary will get four corresponding digits in
the codebook. As a result, the chance that the adversary can
correctly guess one digit of the password is the chance that
the system asks for the same position plus the chance that
the system asks for the other nine positions and the adversary
guesses them correctly (i.e., 1

10 + 9
10 × 1

10 ≈ 1
5 ).

In other words, the chance of the adversary breaking
into the victim’s account after one successful phishing is
(0.2)4 = 1/625. It is likely that the adversary will conduct more
than one attack and that the victim will not be aware of the
situation in the first few rounds of phishing. To maximize the
information gained, the adversary will ask different positions
in each phishing. Let p be the number of successful phishing
attacks on the same user. Also, let n be the length of the
password and s the number of different symbols for a digit (in
the present example, s = 10). We have the following formula
for the chance the adversary may get into the victim’s account:(

p

s
+

s − p

s
× 1

s

)p

=

(
1 + p

s
− p

s2

)p

. (1)

Table I contains the results from using this codebook.
Conventionally, we use four digits of Arabic numbers (symbol
size s = 10) for a PIN code. Under a phishing free environment,
the code is protected by its key space of size 104. Without this
virtual password protection, one successful phishing attack
will completely invalidate the PIN code. It is clear that our
codebook approach can significantly decrease the chance of
breaking the protection after a few successful phishings. It is
safe to assume that, after a few phishing attacks, the victim
will become suspicious and stop responding to the phisher.
According to the table above, after three successful attacks,
the adversary’s odds of getting into the system increases to
1.87×10−2. In this case, the victim’s account is still relatively
safe if we require the server to lock the account after multiple
attempts to login to the account with an invalid password.
We may also increase the length of the password to resist
more attacks. For example, if we use ten digits, the chances
of compromising the account after three successful phishing

TABLE I

Chance of Breaking the Passwords Under Phishing Attacks

(Symbol Size = 10)

TABLE II

Chance of Breaking the Passwords Under Phishing Attacks

(Symbol Size = 64)

attacks are about the same as a 4-digit PIN code under a
phishing-free environment. However, we should take every
precaution and assume that five or more successful phishing
attacks can be made on a careless user. To have a password
with 20 digits is unrealistic. Instead, we can increase the
symbol size by allowing letters and some special symbols to be
used in the passwords. In practice, 64 is a reasonable symbol
size. We have the results in Table II.

According to the above table, if the symbol size is increased
to 64, the security level of four digit passwords after five suc-
cessful phishing attacks is still at the level of conventional 4-
digit PIN codes under a phishing-free environment. In practice,
it is not likely that a user will respond to the phisher more than
five times without getting suspicious. Note that our concern is
very different from the chosen (or known)-plain text attack in
the context of cryptography because a large amount of plain-
cipher text is not available to the phisher.

B. Reference Switching

Let � denote the alphanumeric set, where alphabets are
case insensitive. Each element in � is coded by 0 = 0, 1 =
1, ..., 9 = 9, A = 10, B = 11, ..., and Z = 35 for arithmetic.
Here, we present a reference switching (RS) function, �∗ →
�∗, using the hidden password as a reference. RS does not
have to be bijective, as we believe that this restriction will
help the adversary narrow down the possibilities. Since the
server and the user share the same hidden function parameters,
the two parties can obtain the same result while the adversary



XIAO et al.: DIFFERENTIATED VIRTUAL PASSWORDS, SECRET LITTLE FUNCTIONS, AND CODEBOOKS 413

has little chance of his/her result agreeing with the server’s.
Let X = x1x2...xn be the hidden password, provided that we
require n to be a prime number not less than 7. This length
restriction is required for security reasons that we will explain
later. When the user tries to login to the system, the system
presents n random alphanumeric digits R = r1r2...rn. Let V =
v1v2...vn be the virtual password that the user needs to input.
RS(X, R) = V is computed as follows. For each i = 1...n

vi = rix(xiri mod n)+1 mod 36. (2)

Consider the following example. Let n = 7, X =
ABCD123, and S denote the alphanumeric set of x (i.e.,
S = A, B, C, D, 1, 2, 3). Suppose that the sever presents
r = 1 234 567 for the user to compute the virtual password.
We have the following calculation:

xi code ri xiri xai
vi

x1 A 10 1 3 D D

x2 B 11 2 1 B M

x3 C 12 3 1 B X

x4 D 13 4 3 D G

x5 1 1 5 5 2 A

x6 2 2 6 5 2 C

x7 3 3 7 0 A Y

The fifth column of the table ai = (xiri mod 7) + 1
is computed for the reference of X that will actually be
used in computing vi. The user should input DMXGACY
as the password and this is what the server requires for
authentication.

What happens if the user is linked to a phisher’s page?
Successful phishing, as well as shoulder-surfing and key-
logger, will make R and V available to the adversary. Thus,
the adversary can recover the set of elements in the sixth
column of the table above by xai

= r−1
i ki mod 36. Let such

a set be S′; thus S′ = A, B, D, 2. Clearly, S′ ⊆ S. However,
the positions of these digits will not be revealed no matter
how many rounds of successful phishing have been conducted
by the adversary because all he/she can get is a subset of
S. For example, with R = 1111111, the adversary will have
S′ = B, C, D, 1, 2, 3. In the worst case, the adversary may get
S′ = S, but the actual X is still protected to a certain extent by
the number of permutations of S. To make this amount more
significant, we suggest letting X have at least 11 digits. In
this case, even when S is recovered, we still have more than
35 million permutations for the phisher to guess. We suggest
letting the length of X be a prime number so that every digit
in X has a chance to be used. For example, if the length of X

is even and R contains only even digits, then only the digits
at even positions in X will be used for V .

V. Quantitative Security Analysis

However, to the best of our knowledge, there is not a scheme
which can defend against all the attacks listed above at the
same time.

Note that using SSL/TLS in websites could not prevent key
logger attacks.

Quantitative analysis is always necessary in security anal-
ysis. We differentiate the three common methods of stealing
passwords according to the degree of damage they are able to
cause. It may be difficult to clearly say that one attack is more
powerful than the other, but they do have different properties
that may affect design principles for password protection
against them.

1) Phishing. This is the most aggressive method, since
the adversary can choose fake random numbers to help
him/her figure out the hidden part of the password.
The possible key-space dramatically drops after a few
successful phishing attacks. But the adversary cannot
conduct successful attacks on the same victim too many
times because the victim will eventually become suspi-
cious.

2) Shoulder-surfing. This attack is less aggressive due to its
physical constraints. The adversary may just randomly
pick up a victim and obtain some limited data over the
victim’s shoulder. Even if a camera is well installed
at a certain spot, the victims still arrive on a random
basis. The adversary has no control oven them. On the
other hand, we may assume that the adversary can also
observe the random numbers provided by the system.
In other words, if the virtual password function is not
complicated enough, the key-space will significantly
drop after a few shoulder-surfing attacks.

3) Key-logger. This is the least aggressive attack among the
three because the adversary cannot control and observe
the random number. It may be safe to assume that the
adversary cannot observe the random number provided
by the system because the random numbers are shown
on the screen and user key/mouse actions usually do not
react directly to the numbers. However, the victim may
not be able to know that he/she is under attack (e.g., a
well-hidden Trojan program). Thus, given a sufficiently
long period of time, the adversary may collect a certain
amount of data for analysis.

Thus, with the strength and weakness of the three possible
real-world attacks in mind, we do not have to examine our
schemes with theoretical cryptographic standards that may
lead us to an impossible task under the computational con-
straints of designing a virtual password scheme; instead, we
look for an economic method that can protect passwords
against the three methods under some reasonable assumptions.
We propose some criteria as follows.

1) How many successful phishing attacks can be tolerated?
We think 10–20 are enough. Tolerating more than 50 or
100 successful phishing attacks may not be necessary
because it is not likely that a user will keep giving away
information more than that many times without getting
any positive feedback. In other words, our schemes
should remain secure after 10 to 20 successful phishing
attacks. This is already very conservative.

2) For key-logger/shoulder-suffer, our scheme should re-
main secure after the adversary obtains 500–1000 pairs



414 IEEE SYSTEMS JOURNAL, VOL. 8, NO. 2, JUNE 2014

of random numbers and virtual passwords. Making it
a few thousand attacks may also be possible. A user
may login his/her account with the same password 500–
1000 times before the system forces the user to change
passwords.

Also, the following questions should be answered in order
to give a precise analysis.

1) How many tries can an adversary make to login to an
account without a correct password? ATM machines
usually allow three tries. Some secure band accounts
also only allow three tries.

2) What is the size of the key-space we need to maintain
after some attacks? So far we have found that it is
impossible to maintain sufficiently large key-space after
a few attacks (phishing/shoulder-surfing). An alternative
is to make it computationally secure; that is, even if
there is only one key left consistent with the observed
information, the key is still difficult to find. Our RS
function may have this property.

3) How many victims can an adversary have?

The three questions will determine the chance of an ad-
versary breaking into an account. The user and the server (for
example, the banker) may have different prospects. A user may
feel relatively protected if the key space is dropped to a few
hundred, as long as the login process will be locked after a few
wrong tries. On the other hand, the server may not agree if the
determining adversary can have a few hundred victims over
a short period, because that means the adversary has a very
good change of compromising at least one or two accounts.

A. Security Analysis for Secret Little Functions

User specified functions can be infinite. Since attackers
do not know the function forms (i.e., secret encryption al-
gorithms), these simple functions are very secure. Therefore,
secret little functions can easily prevent phishing, shoulder-
surfing, key-logger, and even multiple attacks. How many
successful phishing attacks can be tolerated by secret little
functions? The answer is infinite. For key-logger/shoulder-
suffer, secret little functions can remain secure after the
adversary obtains many virtual passwords.

Next, we prove that the proposed scheme can prevent the
following attacks.

1) Phishing. Since each time, each time the user inputs
a virtual password, the phishing attacker could get the
virtual password, but cannot obtain the real password.
The virtual password is different each time.

2) Shoulder-surfing. Since each time, each time the user
inputs a virtual password, the shoulder-surfing attacker
could get the virtual password, but cannot obtain the real
password. The virtual password is different each time.

3) Key-logger. Since each time, each time the user inputs a
virtual password, the Key-logger attacker could get the
virtual password, but cannot obtain the real password.
The virtual password is different each time.

4) Replay attack. The virtual password does not suffer the
replay attack since each time, the server generated a
different random number.

TABLE III

Responses of Users

Q/A How comfortable to do a single
digit calculation?

Very easy 50%
Difficult without a calculator 2%
Ok without a calculator 19%
Easy without a calculator 29%
Q/A Would you like to improve your

password security with a little bit
extra time?

Yes 41%
No 6%
Dno’t care 16%
Yes, but depends on extra time 37%

We can prove mathematically that secret little function is
much more secret than any other symmetric cipher (such
as DES, AES, and so on) under the brute-force attack with
the following theorem, while the brute-force attack is to try
every possible key on a piece of ciphertext until an intelligible
translation into plaintext is obtained.

Theorem 1: Under the brute-force attack, secret little func-
tion is much more secret than any other symmetric cipher.

Proof: Let P , C, and K denote the plaintext, ciphertext, and
key, respectively, for any given symmetric cipher. Let LP , LC,
and LK denote the lengthes of P , C, and K, respectively. For
an attacker to try to use the brute-force attack to the symmetric
cipher, the number of alternative keys is 2LK . In other words,
the attacker at worst needs to try 2LK to get the correct key. On
the other hand, for a secret little function approach, the number
of alternative keys is the number of secret little functions.
Since the number of secret little functions is not only infinite,
but also uncountable infinite, the number of alternative keys
for the secret little function approach is infinite, denoted as
∞. Since we have 2LK � ∞, we then prove the theorem.

B. Security Analysis for Codebook and RS

The codebook and RS approaches can prevent shoulder-
surfing and key-logger since a human is not likely to tolerate
more than two or three phishing attacks without being able to
get into the system. RS is much stronger than the codebook
approach since the function using a codebook cannot survive
ten successful phishing attacks while the RS can survive an
arbitrary number of successful phishing attacks.

VI. Implementation and Evaluation

We implement secret little functions and demonstrate that
they defeat phishing, key-logger, and shoulder-surfing attacks
in a PC machine. Even though such a calculation is compli-
cated for some people, our helper-applications help to relieve
the users of this required human computing. A user response
test in the next is to test the user’s feeling on the time spent
to calculate the virtual password.

Our password scheme is dynamic and requires a user to
make some computations. A survey in Table III is used to
collect 50 users’ responses for our system implementation.
It was found that most of the respondents could complete the



XIAO et al.: DIFFERENTIATED VIRTUAL PASSWORDS, SECRET LITTLE FUNCTIONS, AND CODEBOOKS 415

single digit calculation easily without help from the calculator.
The most of the surveyed people showed their need for more
secure internet with the cost of spending a little extra time.

VII. Conclusion

We discussed the challenges of protecting users’ passwords
on the internet and presented some related work in this field.
We discussed how to prevent users’ passwords from being
stolen by adversaries. We proposed a virtual password concept
involving a small amount of human computing to secure users’
passwords in online environments. We proposed differentiated
security mechanisms in which a user has the freedom to choose
a virtual password scheme ranging from weak security to
strong security. The function/program is used to implement the
virtual password concept with a tradeoff between security and
complexity and requires small amount of human computing.
However, since simplicity and security conflict with each other,
it is difficult to achieve both. We further proposed several
functions serving as system recommended functions and pro-
vided a security analysis. We analyzed how the proposed
schemes defend against phishing, key-logger, shoulder-surfing
attacks, and multiple attacks. In user-specified functions, we
adopted secret little functions in which security is enhanced by
hiding secret functions/algorithms. In conclusion, user-defined
functions (secret little functions) are better.

We believe that for some important accounts such as bank
accounts, some users would like to spend a little more human
computing time to make it more secure, especially when using
a computer in an insure environment such as the Internet cafe.

In the future, we plan to study how to design smarter
functions to alleviate the computation-burden of the user. We
would also like to develop some small applications with built-
in virtual passwords, which will be able to run at a customer’s
wireless device, such as a cellular phone or a PDA. With such
an application, the user only needs to input the system random
digits which the system provides and then the virtual password
is automatically calculated for the user.

References

[1] T. Dierks and C. Allen, The TLS Protocol—Version 1.0, IETF RFC 2246,
Jan. 1999.

[2] [Online]. Available: http://en.wikipedia.org/wiki/Phishing
[3] Anti-Phishing Working Group. [Online]. Available: http://www.

antiphishing.org
[4] [Online]. Available: http://en.wikipedia.org/wiki/Key−logger
[5] [Online]. Available: http://www.eweek.com/article2/0,1895,1940623,00.asp
[6] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. Mitchell, “Stronger

password authentication using browser extensions,” in Proc. 14th
USENIX Security Symp.

[7] E. Gaber, P. Gobbons, Y. Mattias, and A. Mayer, “How to make
personalized web browsing simple, secure, and anonymous,” in Proc.
Financial Crypto, LNCS 1318. 1997.

[8] E. Gabber, P. Gibbons, D. Kristol, Y. Matias, and A. Mayer, “On
secure and pseudonymous user-relationships with multiple servers,”
ACM Trans. Inform. Syst. Security, vol. 2, no. 4, pp. 390–415, 1999.

[9] E. Jung. Passwordmaker [Online]. Available: http://passwordmaker.
mozdev.org

[10] J. la Poutr’e. Password Composer [Online]. Available:
http://www.xs4all.nl/?jlpoutre/BoT/Javascript/PasswordComposer

[11] J. R. Levine. (2004, Apr.). A Flexible Method to Validate
SMTP Senders in DNS [Online]. Available: http://www1.ietf.org/
proceedings−new/04nov/IDs/draft-levine-fsv-01.txt

[12] V. A. Brennen. (2004). Cryptography Dictionary, vol. 2005, 1.0.0 ed.
[Online]. Available: http://cryptnet.net/fdp/crypto/crypto-dict/en/crypto-
dict.html

[13] [Online]. Available: http://www.bell-labs.com/project/lpwa
[14] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, P. Samarati, A. Tironi,

and L. Zaniboni, “Spam attacks: P2P to the rescue,” in Proc. 13th Int.
World Wide Web Conf., 2004, pp. 358–359.

[15] M. Abadi, L. Bharat, and A. Marais, “System and method for generating
unique passwords,” U.S. Patent 6 141 760, 1997.

[16] M. Kuhn. (1997). Probability Theory for Pickpockets—ec-PIN Guessing
[Online]. Available: http://www.cl.cam.ac.uk/?mgk25

[17] C. Herley and D. Florencio, “How to login from an Internet cafe without
worrying about keyloggers,” in Proc. SOUPS, 2006.

[18] [Online]. Available: http://www.citibank.co.jp/en/service/cap/virtualpad
[19] [Online]. Available: http://obr.typepad.com/financial

−innovations/2005/11/ing−direct−adds.html
[20] B. Moller. (1997, Feb.). Schw¨achen des ec-PIN-Verfahrens (Manuscript)

[Online]. Available: http://www.informatik.tu-darmstadt.de/TI/
Mitarbeiter/moeller

[21] A. Herzberg and A. Gbara. (2004). Trustbar: Protecting
(Even Naive) Web Users From Spoofing and Phishing Attacks,
Cryptology ePrint Archive, Rep. 2004/155 [Online]. Available:
http://eprint.iacr.org/2004/155

[22] S. Wiedenbeck, J. Waters, L. Sobrado, and J. Birget, “Design and
evaluation of a shoulder-surfing resistant graphical password scheme,”
in Proc. Working Conf. Adv. Vis. Interfaces.

[23] V. Roth, K. Richter, and R. Freidinger, “A PIN-entry method resilient
against shoulder-surfing,” in Proc. 11th ACM Conf. Comput. Commun.
Security, 2004, pp. 236–245.

[24] IETF. (2004, Jun.). MTA Authorization Records in DNS (MARID)
[Online]. Available: http://www.ietf.org/html.charters/OLD/marid-
charter.html

[25] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy
re-encryption schemes with applications to secure distributed stor-
age,” in Proc. 12th Annu. Netw. Distributed Syst. Security Symp.,
2005.

[26] G. T. Wilfong, “Method and apparatus for secure PIN entry,” U.S.
Patent #5 940 511, United States Patent and Trademark Office, Assignee:
Lucent Technologies, Inc., Murray Hill, NJ, May 1997.

[27] J. Mason, “Filtering spam with SpamAssassin,” in Proc. HEANet Annu.
Conf., 2002.

[28] D. Stinson, Cryptography Theory and Practice, 2nd ed. Boca Raton,
FL: CRC Press, 2005.

[29] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz, “A Bayesian
approach to filtering junk e-mail. In learning for text categorization,” in
Proc. Workshop, May 1998.

[30] T. A. Meyer and B. Whateley, “SpamBayes: Effective open-source,
Bayesian based, e-mail classification system,” in Proc. CEAS, 2004.

[31] MAPS. (1996). RBL—Realtime Blackhole List [Online]. Available:
http://www.mail-abuse.com/services/mds−rbl.html

[32] The Spamhaus Project. The Spamhaus Block List [Online]. Available:
http://www.spamhaus.org/sbl

[33] Netcraft. Anti-Phishing Toolbar [Online]. Available: http://news.netcraft.
com/archives/2004/12/28/netcraft−antiphishing−tool%bar−available−
for−download.html

[34] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “SPINS:
Security protocols for sensor networks,” Wirel. Netw., vol. 8, no. 5, pp.
521–534, 2002.

[35] Y. Xiao, C.-C. Li, M. Lei, and S. V. Vrbsky, “Secret little functions and
codebook for protecting users from password theft,” in Proc. IEEE ICC,
May 2008, pp. 1525–1529.

[36] One-Time Password [Online]. Available: http://en.wikipedia.org/
wiki/One-time−password

[37] S. Lee and K. M. Sivalingam, “An efficient one-time password authen-
tication scheme using a smart card,” Int. J. Security Netw., vol. 4, no.
3, pp. 145–152, 2009.

[38] M. Abdalla, E. Bresson, O. Chevassut, B. Moller, and D. Pointcheval,
“Strong password-based authentication in TLS using the three-party
group DiffieHellman protocol,” Int. J. Security Netw., vol. 2, nos. 3–
4, pp. 284–296, 2007.

[39] M. Lei, Y. Xiao, S. V. Vrbsky, and C.-C. Li, “Virtual password using
random linear functions for on-line services, ATMs, and pervasive
computing,” Comput. Commun. J. Elsevier, vol. 31, no. 18, pp. 4367–
4375, Dec. 2008.

[40] J. Zheng, J. Li, M. J. Lee, and M. Anshel, “A lightweight encryption
and authentication scheme for wireless sensor networks,” Int. J. Security
Netw., vol. 1, nos. 3–4, pp. 138–146, 2006.



416 IEEE SYSTEMS JOURNAL, VOL. 8, NO. 2, JUNE 2014

[41] Y. Jiang, C. Lin, M. Shi, and X. Shen, “A self-encryption authentication
protocol for teleconference services,” Int. J. Security Netw., vol. 1, nos.
3–4, pp. 198–205, 2006.

[42] J. Teo, C. Tan, and J. Ng, “Low-power authenticated group key agree-
ment for heterogeneous wireless networks,” Int. J. Security Netw., vol.
1, nos. 3–4, pp. 226–236, 2006.

[43] C. Tartary and H. Wang, “Efficient multicast stream authentication for
the fully adversarial network model,” Int. J. Security Netw., vol. 2, nos.
3–4, pp. 175–191, 2007.

[44] M. Asadpour, B. Sattarzadeh, and A. Movaghar, “Anonymous authenti-
cation protocol for GSM networks,” Int. J. Security Netw., vol. 3, no. 1,
pp. 54–62, 2008.

[45] S. Huang and S. Shieh, “Authentication and secret search mechanisms
for RFID-aware wireless sensor networks,” Int. J. Security Netw., vol.
5, no. 1, pp. 15–25, 2010.

[46] M. Yang, “Lightweight authentication protocol for mobile RFID net-
works,” Int. J. Security Netw., vol. 5, no. 1, pp. 53–62, 2010.

[47] J. Wang and G. L. Smith, “A cross-layer authentication design for secure
video transportation in wireless sensor network,” Int. J. Security Netw.,
vol. 5, no. 1, pp. 63–76, 2010.

[48] T. Choi and H. B. Acharya, “Is that you? Authentication in a network
without identities,” Int. J. Security Netw., vol. 6, no. 4, pp. 181–190,
2011.

[49] Q. Chai and G. Gong, “On the (in) security of two joint encryption
and error correction schemes,” Int. J. Security Netw., vol. 6, no. 4, pp.
191–200, 2011.

[50] S. Tang and W. Li, “An epidemic model with adaptive virus spread
control for wireless sensor networks,” Int. J. Security Netw., vol. 6, no.
4, pp. 201–210, 2011.

[51] G. Luo and K. P. Subbalakshmi, “KL-sense secure image steganogra-
phy,” Int. J. Security Netw., vol. 6, no. 4, pp. 211–225, 2011.

[52] W. Chang, J. Wu, and C. C. Tan, “Friendship-based location privacy
in mobile social networks,” Int. J. Security Netw., vol. 6, no. 4, pp.
226–236, 2011.

[53] X. Zhao, L. Li, and G. Xue, “Authenticating strangers in online social
networks,” Int. J. Security Netw., vol. 6, no. 4, pp. 237–238, 2011.

[54] D. Walker and S. Latifi, “Partial Iris recognition as a viable biometric
scheme,” Int. J. Security Netw., vol. 6, nos. 2–3, pp. 147–152, 2011.

[55] A. Desoky, “Edustega: An education-centric steganography methodol-
ogy,” Int. J. Security Netw., vol. 6, nos. 2–3, pp. 153–173, 2011.

[56] N. Ampah, C. Akujuobi, S. Alam, and M. Sadiku, “An intrusion de-
tection technique based on continuous binary communication channels,”
Int. J. Security Netw., vol. 6, nos. 2–3, pp. 174–180, 2011.

[57] H. Chen and B. Sun, “Editorial,” Int. J. Security Netw., vol. 6, nos. 2–3,
pp. 65–66, 2011.

[58] M. Barua, X. Liang, R. Lu, and X. Shen, “ESPAC: Enabling security
and patient-centric access control for eHealth in cloud computing,” Int.
J. Security Netw., vol. 6, nos. 2–3, pp. 67–76, 2011.

[59] N. Jaggi, U. M. Reddy, and R. Bagai, “A three dimensional sender
anonymity metric,” Int. J. Security Netw., vol. 6, nos. 2–3, pp. 77–89,
2011.

[60] M. J. Sharma and V. C. M. Leung, “Improved IP multimedia subsystem
authentication mechanism for 3G-WLAN networks,” Int. J. Security
Netw., vol. 6, nos. 2–3, pp. 90–100, 2011.

[61] N. Cheng, K. Govindan, and P. Mohapatra, “Rendezvous based trust
propagation to enhance distributed network security,” Int. J. Security
Netw., vol. 6, nos. 2–3, pp. 101–111, 2011.

[62] A. Fathy, T. ElBatt, and M. Youssef, “A source authentication scheme
using network coding,” Int. J. Security Netw., vol. 6, nos. 2–3, pp. 112–
122, 2011.

[63] L. Liu, Y. Xiao, J. Zhang, A. Faulkner, and K. Weber, “Hidden
information in microsoft word,” Int. J. Security Netw., vol. 6, nos. 2–3,
pp. 123–135, 2011.

[64] S. S. M. Chow and S. Yiu, “Exclusion-intersection encryption,” Int. J.
Security Netw., vol. 6, nos. 2–3, pp. 136–146, 2011.

[65] X. Lin, X. Ling, H. Zhu, P. Ho, and X. Shen, “A novel localized
authentication scheme in IEEE 802.11 based wireless mesh networks,”
Int. J. Security Netw., vol. 3, no. 2, pp. 122–132, 2008.

[66] A. Scannell, A. Varshavsky, A. LaMarca, and E. De Lara, “Proximity-
based authentication of mobile devices,” Int. J. Security Netw., vol. 4,
nos. 1–2, pp. 4–16, 2009.

[67] J. M. McCune, A. Perrig, and M. K. Reiter, “Seeing-is-believing: Using
camera phones for human-verifiable authentication,” Int. J. Security
Netw., vol. 4, nos. 1–2, pp. 43–56, 2009.

[68] S. Laur and S. Pasini, “User-aided data authentication,” Int. J. Security
Netw., vol. 4, nos. 1–2, pp. 69–86, 2009.

Yang Xiao (SM’04) was with the industry as a
Medium Access Control Architect involving the
IEEE 802.11 standard enhancement work before he
joined the Department of Computer Science, Uni-
versity of Memphis, Memphis, TN, in 2002. He is
currently with the Department of Computer Science
(with tenure), University of Alabama, Tuscaloosa.
His research has been supported by the U.S. National
Science Foundation (NSF), U.S. Army Research,
The Global Environment for Network Innovations,
Fleet Industrial Supply Center-San Diego, FIAT-

ECH, and the University of Alabama’s Research Grants Committee. His
current research interests include security and communications/networks. He
has published more than 200 refereed journal papers (including 50 IEEE/ACM
transaction papers) and over 200 refereed conference papers and book chapters
related to these research areas.

He was a Voting Member of the IEEE 802.11 Working Group from 2001
to 2004. He serves as a panelist for the U.S. NSF, Canada Foundation
for Innovation’s Telecommunications Expert Committee, and the American
Institute of Biological Sciences, as well as a referee/reviewer for many national
and international funding agencies. He currently serves as the Editor-in-Chief
for the International Journal of Security and Networks and the International
Journal of Sensor Networks. He was the Founding Editor-in-Chief for the
International Journal of Telemedicine and Applications from 2007 to 2009.

Chung-Chih Li received the Ph.D. degree in com-
puter and information science from Syracuse Uni-
versity, Syracuse, NY.

He is currently an Associate Professor with the
School of Information Technology, Illinois State
University, Normal. He teaches several programming
courses at different levels and coaches his students in
ACM programming contests. His primary research
interests include theoretical computer science. He
is particularly interested in higher ordered compu-
tation. He has extended his research interests into

cryptography, security, WSN, and computational learning theory.

Ming Lei received the B.A. degree from Southwest
Jiaotong University, Chengdu, Sichuan, China, in
2000, and the Ph.D. degree in computer science from
the University of Alabama, Birmingham, in 2008.

He is currently a Principal Software Engineer
with Oracle Corporation, Redwood City, CA, in
which, as a Technical Leader, he designs and de-
velops advanced analytical applications for retailers
to optimize and plan their pricing strategy. His
current research interests include real-time database
systems, networking security, high-performance grid

computing, mobile data management, and data mining.

Susan V. Vrbsky received the B.A. degree from
Northwestern University, Evanston, IL, the M.S.
degree in computer science from Southern Illinois
University, Carbondale, and the Ph.D. degree in
computer science from the University of Illinois at
Urbana-Champaign, Urbana.

She is currently an Associate Professor of com-
puter science with the Department of Computer
Science, University of Alabama, Tuscaloosa. Her
current research interests in database systems in-
clude cloud computing, data grids, green computing,

real-time database systems, and database security.


