Future Generation Computer Systems 30 (2014) 1-13

Future Generation Computer Systems

B —

Contents lists available at ScienceDirect o
FiGICIS!

journal homepage: www.elsevier.com/locate/fgcs ==

Achieving Accountable MapReduce in cloud computing

Zhifeng Xiao?, Yang XiaoP*

@ CrossMark

2 Behrend College, The Pennsylvania State University, Erie, PA 16563, USA
b The University of Alabama, Tuscaloosa, AL 35487-0290, USA

HIGHLIGHTS

e Propose Accountable MapReduce, which forces each machine to be held responsible for its behavior.
e To optimize the utilization resource, we formalize the Optimal Worker and Auditor Assignment (OWAA) problem.
e Our evaluation results show that the A-test can be practically and effectively applied to existing cloud platforms employing MapReduce.

ARTICLE INFO

ABSTRACT

Article history:

Received 19 October 2011
Received in revised form

13 June 2013

Accepted 17 July 2013
Available online 31 July 2013

Keywords:
Accountable
MapReduce
Cloud computing

MapReduce is a programming model that is capable of processing large data sets in distributed
computing environments. The original MapReduce model was designed to be fault-tolerant in case of
various network abnormalities. However, fault-tolerance does not guarantee that each working machine
will be completely accountable; when nodes are malicious, they may intentionally misrepresent the
processing result during mapping or reducing, and they may thus make the final results inaccurate and
untrustworthy. In this paper, we propose Accountable MapReduce, which forces each machine to be held
responsible for its behaviors. In our approach, we set up a group of auditors to perform an Accountability
Test (A-test) that checks all of the working machines and detects malicious nodes in real time. The A-test
can be implemented with different options depending upon how the auditors are assigned. To optimize
the utilization resource, we also formalize the Optimal Worker and Auditor Assignment (OWAA) problem,
which is aimed at finding the optimal number of workers and auditors in order to minimize the total
processing time. Our evaluation results show that the A-test can be practically and effectively applied to

existing cloud platforms employing MapReduce.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

MapReduce [1] has been widely used as a powerful data pro-
cessing model. It has efficiently solved a wide range of large-scale
computing problems, including distributed grep, distributed sort,
web-link graph reversal, web-access log stats, document cluster-
ing, machine learning, etc. Cloud computing presents a unique op-
portunity for batch-processing and analyzing terabytes of data that
would otherwise take hours to finish [2-5]. Most cloud providers
(e.g., Google, Yahoo!, Facebook, etc.) adopt MapReduce to build
multitenant computing environments. Usually, cloud customers
have a large set of data to be processed under certain time con-
straints. They must provide a client with the MapReduce program
and with data that is ready to be processed. Cloud providers main-
tain thousands of working machines to fulfill the data processing

* Correspondence to: Department of Computer Science, The University of
Alabama, Tuscaloosa, AL 35487-0290, USA. Tel.: +1 205 348 4038; fax: +1 205 348
0219.

E-mail addresses: zux2@psu.edu (Z. Xiao), yangxiao@ieee.org (Y. Xiao).

0167-739X/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.07.001

jobs submitted by their customers. As an example [6], The New
York Times used 100 Amazon Elastic Compute Cloud (Amazon EC2)
instances and a Hadoop [7] application to process 4 TB of raw im-
age TIFF data (stored in Amazon Simple Storage Service (Amazon
S3)) into 11 million finished PDFs in 24 h at a computation cost of
about $240 (not including bandwidth).

In such a computing environment, the cloud customers out-
source their data to the cloud, which performs the storing and
computing operations required by the customers. Customers must,
therefore, fully trust the cloud provider. However, a cloud provider
cannot guarantee that its data center (which may have thousands
of working machines) is 100% trustworthy. Some machines may
become malicious if they are attacked and controlled by hackers;
malicious machines will not faithfully carry out the tasks assigned
to them. As a result, the processing result is no longer correct or
trustworthy. In the New York Times example, malicious nodes may
mess up the image conversion process so that the PDFs do not
match the original TIFF images. It is even harder for the New York
Times to check if these PDFs are correctly converted because of the
tremendous data size of the PDFs. In this paper, we explore the use
of accountability to address this problem.

http://dx.doi.org/10.1016/j.future.2013.07.001
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.future.2013.07.001&domain=pdf
mailto:zux2@psu.edu
mailto:yangxiao@ieee.org
http://dx.doi.org/10.1016/j.future.2013.07.001

2 Z. Xiao, Y. Xiao / Future Generation Computer Systems 30 (2014) 1-13

Accountability has been a longstanding concern of trustworthy
computer systems [8], and it has recently been elevated to a
first class design principle for dependable network systems [9,10].
Accountability implies that an entity should be held responsible for
its own actions or behaviors [11-16]. In the MapReduce scenario,
accountability means that all working machines (e.g., mappers
and reducers) will be responsible for the tasks that they have
completed.

In this paper, we propose building an Accountable MapReduce
to make the cloud computing platform trustworthy. We use an
Accountability Test (A-test), which checks all working machines
when a job is undertaken and detects malicious nodes in real time.
The A-test is performed by a group of trusted machines, which
are called the Auditor Group (AG). The AG takes advantage of
the determination of the user’s MapReduce program to replay the
tasks executed by working machines. The MapReduce framework
makes it possible for an auditor to acquire the input data block
and processing results without knowledge of the working machine.
Therefore, auditors are free to replay the tasks that have been
finished. If the replay output does not match the original output,
it means that the worker is returning bad results, and the evidence
is the combination of the task, input, original output, and replay
output.

A challenge of Accountable MapReduce is the reduction of
the overhead introduced by the A-test. In theory, the A-test can
guarantee the detection of any misbehavior by fully duplicating
each task, and this causes the processing time to at least double.
To make the A-test more efficient, we abandon pursuing 100%
accountability, which guarantees exposure of every malicious
node but has a high cost. We adopt P-Accountability [17], which
quantifies the degree of accountability. We use P-Accountability
for system efficiency. Based upon the batch-processing property
of MapReduce, the performance of the A-test with P-Accountability
can be greatly improved by decreasing the degree of accountability
by less than 1%.

We summarize the contributions of this paper as follows:

1. We propose building an Accountable MapReduce to detect
malicious nodes. Verifiable evidence will be generated to ensure
that the malicious nodes cannot deny their behavior.

2. Instead of pursuing perfect accountability, A-test allows the
system to achieve P-Accountability with less overhead and a
higher performance.

3. We formalize the Optimal Worker and Auditor Assignment
(OWAA) problem, which is aimed at finding the optimal
numbers of workers and auditors in order to minimize the total
processing time.

4. We also present another sentinel-based verification scheme
for implementing the A-test. Our analysis shows the sentinel
scheme is not as good as the original scheme.

5. We have implemented a prototype of Accountable MapReduce
on Hadoop. The experiment’s results show that our approach is
both efficient and effective.

The rest of this paper is structured as follows: Related work
will be reviewed in Section 2. Then, we will introduce MapReduce
in Section 3. In Section 4, we address the accountability issue
in MapReduce and define the problem that is our focus. Our
solution, Accountable MapReduce, is discussed in Section 5. In
Section 6, we give the implementation details. A-test is presented
in Section 7. Analysis of Accountable MapReduce is given in
Section 8. We present a sentinel-based verification scheme in
Section 9. Evaluation is provided in Section 10. Finally, we conclude
the paper in Section 11.

2. Related work
Its ability to process data intensive tasks has made MapReduce

increasingly important in distributed computing areas [18]. Chu
et al. [19] applied MapReduce to machine learning on multi-core

platforms. He et al. [20] implemented Mars, a MapReduce frame-
work, in graphics processors. Papadimitriou et al. [21] applied
MapReduce to the area of data mining; they designed Disco,
which is a practical approach for distributed data pre-processing.
Ekanayake et al. [22] adopted the MapReduce technique for two
scientific data analyses, which are high energy physics data analy-
ses, and for K-means clustering. Existing work focuses on utilizing
MapReduce to solve different problems in various domains. How-
ever, few have considered accountability issues in MapReduce.
Accountable MapReduce is an attempt to address the issue of un-
trustworthy nodes and their behavior in MapReduce.

Security issues in MapReduce have been discussed in [23,24].
Wei et al. [25] present SecureMR, a practical service integrity
assurance framework for MapReduce. SecureMR provides a
decentralized, replication-based integrity verification scheme for
ensuring the integrity of MapReduce in open systems. SecureMR is
intended to achieve 100% integrity of MapReduce, which can affect
its performance. We believe that for some applications, efficiency is
more important than 100% integrity. Therefore, instead of pursuing
100% accountability, we allow the customers to choose the level
of accountability that they need based upon their applications. It
turns out that slightly decreasing the expectation of accountability
leads to a significant improvement of system performance in terms
of job processing time.

Accountability has been regarded as an important issue in cloud
computing. Trustworthy relationships between the cloud provider
and cloud customers have been addressed in [26,27]. The customer
places his computation and data on machines that he cannot
directly control; the provider agrees to run a service with details
he/she does not know [26]. Therefore, accountability is employed
to determine whether or not the Service Level Agreement (SLA) is
fulfilled. If it is not, evidence should be provided in order to prove
which unit is responsible. MapReduce is a popular computing
framework in cloud platforms. In this paper, we build Accountable
MapReduce, which solves the subset of problems addressed in [26].
Accountable MapReduce is able to detect malicious workers and
provide verifiable evidence.

3. MapReduce background

3.1. Programming model

With the MapReduce programming model, programmers only
need to specify two functions: Map and Reduce. The Map function
receives a key/value pair as input and generates intermediate
key/value pairs to be further processed. The Reduce function
merges all the intermediate key/value pairs associated with the
same (intermediate) key and then generates final output.

There are three main roles: the master, mappers, and reduc-
ers. The single master acts as the coordinator responsible for task
scheduling, job management, etc. MapReduce is built upon a dis-
tributed file system (DFS), which provides distributed storage.
Fig. 1 shows the execution process of MapReduce. The input data
is split into a set of M blocks, which will be read by M mappers
through DFS 1/0. Each mapper will process the data by parsing
through the key/value pair, and then, they will generate the in-
termediate results that are stored in its local file system. The in-
termediate result will be sorted by the keys so that all pairs with
the same key will be grouped together (the shuffle phase). If the
memory size is limited, an external sort might be used to deal with
large amounts of data at one time. The locations of the intermedi-
ate results will be sent to the master who notifies the reducers to
prepare to receive the intermediate results as their input. Reducers
then use the Remote Procedure Call (RPC) to read data from map-
pers. The user defined reduce function is then applied to the sorted
data; basically, key pairs with the same key will be reduced in some
way depending upon the user defined reduce function. Finally, the
output will be written to DFS.

Z. Xiao, Y. Xiao / Future Generation Computer Systems 30 (2014) 1-13 3

[

: o % P
i ‘\,\aow L 2

- (23
g (2
o shuffle %@ % %g}
o© Mapper %
?

Block |°

Block
Block
e

Fig. 1. MapReduce working flow.

I

Reducer

Reducer

Reducer

i

3.2. Fault tolerance

MapReduce is designed to be fault tolerant because failures are
a common phenomena in large scale distributed computing.

3.2.1. Worker failure

The master pings every mapper and reducer periodically. If no
response is received for a certain amount of time, the machine is
marked as failed. The ongoing task and any tasks completed by this
mapper will be re-assigned to another mapper and executed from
the very beginning. Completed reduce tasks do not need to be re-
executed because their output is stored in the global file system.

3.2.2. Master failure

Since the master is a single machine, the probability of master
failure is very small. MapReduce will re-start the entire job if the
master fails.

3.2.3. Byzantine fault tolerance

A Byzantine fault [28] is an arbitrary fault that occurs during the
execution of an algorithm by a distributed system. It encompasses
both omission failures (e.g., crash failures, failing to receive a
request, or failing to send a response) and commission failures
(e.g., processing arequest incorrectly, corrupting local state, and/or
sending an incorrect or inconsistent response to a request).

The MapReduce framework can suffer both omission failures
and commission failures. Omission failures can be properly solved
by the MapReduce built-in fault tolerance mechanisms. However,
commission failure is not considered in the original version.

4. Problem statement
4.1. Attack model

Fault-tolerance will address node failures, such as a worker not
responding to the master or a worker machine totally crashing, etc.
To address node failures, the master learns the task fail event and
then takes further action (e.g., it re-executes the failed Map/Reduce
task on another machine). However, fault-tolerance is unable to
detect a malicious node intending to alter the Map/Reduce function
and return inaccurate results. We illustrate this type of attack with
an example.

Wordcount is a typical MapReduce application. Its job is to
count the occurrences of each word in large input text data. If
there are malicious working machines in the system, the output
file, which contains word counts of every word, is inaccurate.

Consider the wordcount example in Fig. 2. Assume that the sys-
tem is free of malicious nodes. There are three mappers, each of
which maps one line of the file. After the mapping function, we
have the map output as the intermediate result. Then, the inter-
mediate results will be shuffled (sorted by key) and read by reduc-
ers (five, in this case), which reduce the intermediate results and
generate the final output.

If all units faithfully execute their tasks, the final output will
be accurate. Otherwise, we cannot trust the results because the
malicious units may alter part of the results. For example, if a
mapper is malicious, it has multiple ways to alter the output:
(1) filter some keys, (2) create keys that do not exist in the input
file, (3) modify the value intentionally, etc. A malicious reducer is
able to cause similar errors.

To solve the problem, we propose Accountable MapReduce,
which ensures that

(1) Malicious nodes intending to alter the processing result will
be exposed; additionally, Accountable MapReduce is able to
provide verifiable evidence to ensure that the detection is
reputable.

(2) The failed jobs will be re-directed to another working node
until it is verified as correct.

5. Accountable MapReduce

5.1. Design principles

A key function of Accountable MapReduce is detecting mali-
cious nodes that generate inaccurate results. We now present the
principles that guided our design:

(1) The accountability mechanism should be concealed so that
malicious nodes are unaware of what is happening. We assume
that machines may be fully controlled by attackers, and they
may be smart enough to discover this; if a machine is aware
of anything abnormal, it takes countermeasures to cover itself.
It follows that we leave any machine alone when an A-test is
ongoing.

(2) The overhead brought by the accountability mechanism should
be minimized to reduce processing time.

(3) When a malicious node is caught, the system should be able
to provide verifiable evidence to show that the node is indeed
being malicious.

5.2. Assumptions

The design of Accountable MapReduce is based upon the fol-
lowing assumptions:

(1) The data set provided by cloud customers can be processed by
MapReduce.

(2) The Auditor Group (AG) is a trustworthy domain, and this
means that the machines of the AG are free of any malicious
actions.

the weather is good.
today is good.
good weather is good.

Mapper 1: (the 1), (weather 1),
(is 1), (good 1).

_M*a&'\l/ Mapper 2: (today 1), (is 1), (good 1). % Reducer 3: (weather 2)

Mapper 3: (good 1), (weather 1),
(is 1), (good 1).

Reducer 1: (the 1)
Reducer 2: (is 3)

Reducer 4: (today 1)
Reducer 5: (good 4)

file Map output

Reduce output

Fig. 2. A wordcount example of MapReduce.

4 Z. Xiao, Y. Xiao / Future Generation Computer Systems 30 (2014) 1-13

(3) Aworker cannot be reclaimed until the entire job is completed.
When the customer confirms the job is done, all machines will
be released back to the cloud.

(4) A malicious node randomly performs bad actions. This means
that the faulty parts of the processing result also distribute
randomly throughout the entire result. In addition, there may
be multiple faulty parts in the processing results. Once a fault
area is found, the test will stop because we already have
evidence to expose the bad node.

(5) Allinput data, intermediate results, and output data will not be
removed until the entire job is finished.

(6) Data from a cloud customer is correct.

5.3. Accountable MapReduce design

5.3.1. Correctness checking scheme

PeerReview [29] provides accountability for distributed sys-
tems. It assumes that every node in the system is a deterministic
state machine (i.e., for some certain input, the output will be the
same). Two critical technologies that are employed by PeerReview
are tamper-evident logging and witnessing. A tamper-evident log
is implemented by a hash chain, which guarantees that any mod-
ification to the log will be detected so that a node has to record
its behavior faithfully. A witness, which is also a regular node, is
able to check the correctness of other nodes that it is witnessing
by replaying the log files kept in each node. As a result, malicious
nodes will eventually be detected and exposed to all other correct
nodes. PeerReview is applicable to most distributed applications.
However, it is not applicable to MapReduce. The major concern
is overhead. First, the input of a large task might be at the TB or
even PB level (even though there are thousands of workers, the
split task also has a large workload), and the output depends upon
the input. This means that all input and output events will have to
be logged so that the witness is capable of replaying log files and
checking their correctness. Second, for witness checking, a node
has to upload its log segment to multiple witnesses, which is ex-
tremely bandwidth-consuming.

The idea of correctness checking is simple. Assume that the
auditor is a trustworthy node; both the worker and the auditor
are regarded as deterministic state machines, and the protocol is
running on them. If the input data is the same (adopting tamper-
evidence logs to ensure it), the output should be the same as well.
After comparing output (from the worker) and output’ (from the
auditor), the system is able to determine whether the worker is
good or not. The evidence is the combination of input, output’, and
output; additionally, it is verifiable to any other auditors.

5.3.2. Auditor group

The Auditor Group (AG) carries out an Accountability Test
(i.e., an A-test, which will be introduced next) to detect malicious
nodes. Normally, as shown in Fig. 3, cloud resources will be divided
into multiple slices, each of which is rented by a customer. A slice is
a group of working machines assigned to a customer. We maintain
an AG manager for the entire cloud and one AG for each slice that
runs MapReduce. The reason for associating each slice with one AG
is to conserve the privacy and independence of customers.

The AG Manager is a coordinator that conducts AG creation,
management, and disposal. After the AG manager becomes aware
of the customer’s data size, timing, and other requirements, it will
determine the AG size and then create an AG for the slice.

Each AG is internally structured as a cluster. The head node is
the Group Head (GH), and the member node is the Group Member
(GM). The GH randomly picks up workers as test targets. The
master has a protocol with the GH to provide all the information
needed for an A-test. The GH assigns A-test tasks to the available
GMs, which are the actual machines that accomplish the tasks and
report their status.

AG Manager

Slice 1 Slice 2

Fig. 3. Auditor group in cloud platform.

\

Mapper |
= || ——
3 } v i -
/ ™ Mapper & : | | Reducer // N
{ 3 2 ! |‘" "\I
[' BT : —» Output |
| Mapper g ! ! e \ /,‘.
@ ! educer
\ A I il B
Mapper i 1

L\

Auditor Group

Fig. 4. Accountability test.

5.3.3. Accountability test

The A-test is built upon the correctness checking scheme that
we adopt in this paper. The AG is the entity fulfilling the A-test.
The AG consists of a set of trustworthy workers assigned by the AG
manager; these are machines dedicated to performing the A-test
as shown in Fig. 4. The working flow of the A-test is as follows:

1. The A-test is started when Map/Reduce starts.

2. A group of idle auditors will be chosen as the auditor group
of a certain slice. The AG forms a cluster, and only the GH
interacts with the master. The GH is thus able to request the job
information from the master. Therefore, it knows (1) the input
data and output (i.e., the intermediate data before it is shuffled
and sorted) of each mapper; (2) the input (i.e., the intermediate
data after it is shuffled and sorted) and output (i.e., the final
result) of each reducer. This information is essential for the
auditors to check the correctness of each worker.

3. After the job begins, the GM will receive test tasks from
the master, which will be notified once a worker finishes its
task. Based upon the processing sequence of Map/Reduce, the
mappers will finish first, and then, the reduce process is started.
Therefore, in the initial period, mappers will be tested, and then
reducers will be tested after the mappers.

4. After the GH receives a test task of checking a worker, it finds
an available GM to carry out the test. Each check is executed as
follows:

(a) The GM will find corresponding input and output based
upon the task type (i.e., Map/Reduce).

(b) The GM will process the input data again and compare its
output with the original one to check for inconsistency. If
there is an inconsistency, it indicates that the worker being
tested is malicious.

Z. Xiao, Y. Xiao / Future Generation Computer Systems 30 (2014) 1-13 5

5000 :
—— P, =0.01
——- P, =0.005
4000 — .= Py = 0.001]|
e}
£ T
@ i
S 3000 i
3 7
2 /
8 7
8 2000 | P .
= Fd
X o
N
1000 | - i
L /
- i ‘,//
----- = .———'-;'_'_'_:-—/
0 i st e R T i
0 0.2 0.4 0.6 0.8 1
PA
Fig.5. P4 vs.x.

(c) The GM reports the test results to the GH, which will report
back to the master.
5. Ifaworker is detected as malicious, the task it was assigned will
be resubmitted to another worker so that the job continues.

5.3.4. A-test with P-Accountability

If the auditor is trustworthy and processes all the input of the
worker, then the system can definitely determine whether the
worker is malicious or not. This means that the task assigned to the
worker is fully replicated. In the system view, the entire job will be
executed twice, once by regular workers and once by the auditors.
However, the high overhead of processing the job one time shows
that it will take even longer and bring more overhead to process
it twice. Therefore, instead of pursuing perfect accountability, the
A-test provides P-Accountability [17], which gives the customers
options. P-Accountability trades the degree of accountability for
efficiency.

Definition of P-Accountability: we define P-Accountability as
the probability that a malicious worker will be detected when it
tampers with the processing result.

Let P4 denote P-Accountability, and let w denote the number of
records in an input file, which can be either a raw data block for
a map operation or a partition of intermediate results for a reduce
operation. Assume that for any one record, a node has probability
Pm of being malicious (i.e., tampering with the result); this will
cause the corresponding output to be inaccurate. Variable x means
that if we want to achieve P4, we need to check at least x records.
If B, = 1,xis equal to w, meaning that the entire input file is
checked, then

1= (1= pp)* = Py (1)
We have
x= [logi | 2)

If P, = 0.9999 and p,, = 0.01, we have x = 917, which means
that only 917 records need to be checked. Under the assumption
that a malicious node randomly (with probability p,,) tampers with
the Map/Reduce result, we observe that x will not be affected by
input data size, and only p,, and P, will be related to x. Fig. 5 shows
how x changes when P, increases from 0 to 1. When P, increases,
the auditor needs to check more records to achieve a certain
degree of P4. We also observe that a smaller p,, indicates that
there are more records that an auditor needs to check because the
malicious node has less of a chance to tamper with the Map/Reduce
operation.

Some features of the A-test are as follows:

(1) It is practical to implement the A-test, which makes the
most of the existing properties of MapReduce. One important

Table 1
Input and output in MapReduce.
Input Worker Output
Map b; m; thit, hig, ..., hi x}
Reduce {hii, hoiy ... hni} Ti 0;

task for A-test is to acquire the input and output data
of mappers/reducers, and the master has already kept this
information.

(2) Itis anonline test, and this means that the malicious nodes will
be detected as early as possible. The flow of the A-test ensures
that a worker will be tested once it finishes.

(3) Workers do not know that they are being tested. Therefore, it
is hard to take countermeasures to hide bad behavior.

(4) With P-Accountability, the A-test will be very efficient since a
lower P-Accountability will significantly cut down the records
that need to be checked.

One limitation is that false positives may occur if P-Account-
ability is less than 1. In real world MapReduce applications, we can
adjust the parameters so that the probability of a false positive is
close to zero.

6. Implementation of Accountable MapReduce

6.1. Implementation of the master

The master is the coordinator that holds all information
necessary to conduct the A-test. The master has to maintain
the following lists: mappers (we denote the mappers list as M),
reducers (i.e., set R), input set (i.e., B), intermediate result set (i.e.,
H), and output set (i.e., O). Also, the master node is aware of every
input/output relationship existing in the system. Therefore, a four-
tuple set will be kept in order to respond to the requests from
the AG head: {(type, ID, input, output)}, where type is the worker
type (i.e., mapper or reducer), ID is the worker’s identity, and input
and output depend on the worker type. Table 1 shows the input
and output in MapReduce. Let the map output {h; 1, hi2, ..., hix}
be the intermediate result before it is shuffled and sorted; let the
reduce input {hq, hy 4, ..., hy ;} be the intermediate result after it
is shuffled and sorted. These sets are not complete in the beginning.
Therefore, the master will maintain them while the job is running.

6.2. Implementation of the auditor group

Fig. 6 demonstrates the message flow during the A-test. Based
upon the MapReduce primitives, the master will be notified
whenever a worker is done with its job. To perform the A-test, the
master also notifies the GH by sending Message 1. There are two
cases of Message 1 based upon the worker type:

e Case 1: If the worker is a mapper m;, then Messagel = (MAP,
my, by, {hi 1, hi2, ..., hi}), whichincludes all information about
the input and output of m;. Message 2 is an assignment message
of the A-test. The GH will randomly pick up a worker that has
not yet been tested to generate a test assignment. Suppose
that m; is picked as the test object, then Message 2 = (MAP,
mj, b, {hj1, hj2, ..., hjk}). To accomplish the test, the GM
reads input block b; from DFS (i.e., action 3-a) intermediate
result {hj 1, hj 2, ..., hj} from mapper m; (i.e., action 3-b). The
GM is then able to perform the A-test.

e Case2: If the workeris areducerr;, then Message 1 = (REDUCE,
1i, {h1,i, hoi, - .., ha i}, 0i). Suppose that 7 is also picked as the
test object, then Message 2 = (REDUCE, rj, {hyj, haj, ..., hnj},
0j); action 3-b: read {hq, hyj, ..., hy;} from the local disk of
every mapper; action 3-c: read o; from DFS. The GM is then
ready to conduct the test.

6 Z. Xiao, Y. Xiao / Future Generation Computer Systems 30 (2014) 1-13

(Input Data) (Inte;::ﬁlate) (Output Data)

Master

()]
5z

Fig. 6. Communication between the AG and other MapReduce entities. Numbers
1-3 represent messages.

6.2.1. Auditor Group Head (GH)

The GH maintains a list, L, of test tasks; L is a FIFO queue and will
be updated in real time. When a GM is available, the GH will assign
anew test task (i.e., the head of L) to it. When the GH is notified that
worker wj; is done, the GH produces a test task for w; immediately
so that each worker will be tested at least once. The GH collects the
test results from the GM and reports to the master if a bad node is
detected.

6.2.2. Auditor Group Member (GM)

The intermediate result of MapReduce is stored in the workers’
local disks, which are controlled by the workers. If these disks are
accessed by other machines, then a malicious worker may become
suspicious and take some actions in response. Therefore, the first
time a CM reads data from these local disks, it makes a copy of the
data on the DFS so that in future accesses, all data can be obtained
from the DFS. For convenience, we use the same symbol to denote
the intermediate result.

Algorithm 1. A-test

Algorithm: A-test
Require: py,, Pa, task |

X <~ loggzgfn))—l || number of records to be checked
If Ltype = MAP

For recordiin Linputandi < x
tmp<—map(Linput[i])
If tmp is not equal to Loutput[i]
Report inconsistent MAP
If Ltype = REDUCE
while(Linput[x].key = Linput[++x].key);
for key k in Linput
tmp<—reduce(k, list(v))
if tmp is not equal to Loutput(k)
report inconsistent reduce

7. A-test: Plan B

Instead of setting up dedicated auditors, another option is to
choose a set of random idle machines from the server firm to
perform the A-test for all customer groups. The design benefits and
drawbacks can be described as follows:

o Benefits:

o Better resource utilization. In a large data center, at any spe-
cific moment, there are a number of machines swiping in/out.
The idle machines can be utilized to perform the A-test, which
will not take long if the P-value is less than 1.

o Plan B does not occupy customers’ computation resource.
Plan B separates customers’ computation and accountability
mechanism, and it maintains the independence of customers’
business computing.

e Drawbacks:

o Less predictable. The size of the dedicated auditor group is
fixed so that it is easier to evaluate the A-test performance.
If the A-test workload is too much, the admin may add more
auditors to share the workload. In contrast, Plan B presents
high uncertainty. The performance of the A-test depends
upon the available machines at a particular time whereas
the number of available machines is dynamic all the time.
Therefore, it is more difficult for Plan B to make adjustments
for performance management.

7.1. The design of A-test Plan B

With Plan B, the master maintains a pool of auditors, which con-
sists of the idle machines. Once a machine is swiped out and re-
claimed, it reports to the master, which puts it into the pool. When
the master receives a task (Map/Reduce) completion message from
the workers, it randomly picks a number of machines from the pool
as auditors to perform the A-test. The auditors will be returned to
the pool when they complete their test missions and when they
send the results to the master, which can analyze and conclude
whether the worker being tested is malicious or not.

The structure of Plan B differs from Plan A in that the auditors
are not dedicated machines to perform A-test. The auditor pool is
composed of idle machines that were just released from their jobs.
This means that the pool is highly dynamic since once an auditor
accomplishes the A-test, it will quit the auditor pool and be ready
to receive new Map/Reduce tasks.

Once an idle machine reports to the master, it becomes a can-
didate auditor. However, there is no guarantee of the correctness
of a candidate auditor because any worker could be malicious.
Therefore, to verify its correctness, the master will generate a puz-
zle, and allow a candidate auditor solve it. A puzzle is a random
Map/Reduce task generated by a program. If a candidate auditor
solves the puzzle, it becomes a former auditor, which is allowed
to accept A-test tasks from the master. Auditors will be challenged
constantly during the A-test period. Every challenge is a puzzle that
needs to be solved.

7.1.1. The design of puzzle generation

Puzzle generation is a reverse procedure of a Map/Reduce task.
It takes the output of a Map/Reduce task as input and generates
one possible input of a Map/Reduce task as its output, which will
be the main content of the puzzle. For example, if wordcount
is considered to be the host application and the input text for
Map function is “good weather is good”, then the Map output is
{(good, 1), (weather, 1), (is, 1), (good, 1)}, and the reduce output
is {(good, 2), (is, 1), (weather, 1)}. For the puzzle generation, ei-
ther a Map puzzle or a reduce puzzle will be generated. Given
{(good, 1), (weather, 1), (is, 1), (good, 1)} as the input, the out-
put plain text has multiple possibilities, and the program will pick
a random one like “is good good weather” as the puzzle. The pro-
cess can be applied to generate a reduce puzzle as well. A puzzle
makes no difference with the regular A-test tasks. An auditor will
normally be challenged multiple times within the entire A-test. If
any one of them shows an anomaly (i.e., results do not match), the
auditor will be isolated to receive further investigation.

The puzzle generation can be specified as follows:

R_Map(list(K2, intermediate_value))— (K1, V1)
R_Reduce(list(V3))— (K2, list(intermediate_value))

In this process, R_Map and R_Reduce are two primitives for
the Map puzzle and reduce puzzle, respectively. Notice that
both R_Map and R_Reduce are one-to-many mappings (i.e., given
certain input, there are multiple output versions). Therefore,
R_Map and R_Reduce will randomly choose one possible result as

Z. Xiao, Y. Xiao / Future Generation Computer Systems 30 (2014) 1-13 7

a puzzle. With wordcount as an example, these two functions can
be specified in Algorithms 2-3 as follows:

Algorithm 2: R_Map for the wordcount example
R_Map(list (K2, V2)):
// K2: a word
// V2: an integer with value 1
String result = null;
For each(key, value)pair in list:
result.append(key + “”);

Algorithm 3: R_Reduce for the wordcount example

R_Reduce(list (K3, V3))

// K3: aword

// V3: number of occurrences of K3

List result = null;

For each(key, value)pair in list:
inti=0;
for (; i < value; ++i)

result.add({key, 1));

7.2. Other considerations

There is a chance that the auditors are malicious, and if they
are, incorrect test results will be generated. For example, if worker
Afinishes its map task, and the master allows three auditors, t1, t2,
and t3, test A’s task. However, if there are malicious auditors in the
three, then the test results may be inconsistent or even confusing.
There are multiple possibilities for how the auditors behave: (1) all
of them are clean; (2) some/all of them are malicious and behave
like a worker A; (3) some/all of them are malicious, and none of
them behave identical to A; (4) situations 3 and 4 combined.

There is overhead. The cost of Plan B is that since more than
one auditor is involved for the A-test, the computational cost of the
A-test is multiple times more than that of Plan A.

The auditor pool is highly dynamic because every idle worker
only stays for a short while as a temporary auditor and other
auditors swipe in/out frequently.

8. Analysis of Accountable MapReduce

8.1. How many workers and auditors should be assigned?

Accountable MapReduce introduces auditors to the platform.
There is no doubt that the existence of auditors will introduce
extra overhead to the entire computation process. The remaining
question is how many workers and auditors should be assigned
before MapReduce in order to accomplish the job efficiently. Based
upon the plans that we discussed in previous sections, there are
two cases based upon whether auditors are part of the customer
working group.

In this section, we formulate the Optimal Worker and Auditor
Assignment (OWAA) problem, which is aimed at minimizing the
total processing time with the given MapReduce parameter set.
Notations of the OWAA problem are given in Table 2.

8.2. Formulation of Optimal Worker and Auditor Assignment (OWAA)
problem

We have the following assumptions for the OWAA problem:

e The reduced workload for each Reducer can be equally
partitioned.

e We assume that there is no hardware difference between
workers and auditors.

Map Map-1 Map-2 Map-3 Map-4
Adtest T <o T-1 1 T2 ‘ it 1 T4 ‘
A-test & > & T-1 ; T-2 1 T3] T-4]

Fig. 7. Pipelining A-test and Map function.

e Workload is the only factor that determines the process time
for Map/Reduce/A-test. This indicates that if two Mappers have
a task workload with the same size, their processing time will
be the same (the time can be regarded as average process time).

Fig. 7 shows the pipelining of the A-test and Map/Reduce.
We can observe that normally each mapper will process multi-
ple map tasks. According to the assumption, each map will take
an equal amount of time, which is denoted by «. Each map task
will be checked once it is finished. In this figure, T-1 represents
the time slot to examine Map-1 through A-test. The average A-test
time is denoted by &. If @ < «, T}, is mainly determined by (@ x
the number of map tasks per mapper); otherwise T, is mainly de-
termined by (@ x the number of A-test tasks per auditor). We can
formulate the OWAA problem as follows:

Find three-tuple (a, m, r) to

MinimizeT =T, + Ts + T; (3)

inwhich0 <m <n,0 <r <n,0 < a,and m, r, a are integers.

-b
I, = {‘:nw-1b—| a+a a>=m, o<« (4)
st (gl -lasl+1)e
a<m, oa<a«a
T, = f;(m, wo) (5)
[=]-B+p B>p
& - -
T, = L.b]ﬂﬂg azr. p=p (6)
mzw-?gm—mﬁya
a<r, B<
h=[logl1 | (7
wa = fy(w1) (8)
a = f,(b) 9
B = fg(b) (10)
a = fa(h) (11)
B =fz(h). (12)

Eq. (3) gives the objective function T (i.e., total processing time
of a job), which consists of the map phase time (i.e., T;), the shuffle
phase time (i.e., Ts), and the reduce phase time (i.e., T;). Eq. (4)
calculates Ty,. Based on our analysis on Fig. 7, if & > «, T, is
mainly determined by the A-test time, which is obtained from
[wi/(a-b)] - a.If@ < «, Ty, is mainly determined by the map
time, which is calculated from [w;/(m - b)] - «. In addition, the
number of auditors affects the calculation of T,. If the number of
auditors are no less than the number of mappers (i.e, a > m),
one « is added into Ty, (e.g., T-4 in Fig. 7); if a < m, each auditor
will be assigned more A-test tasks, and the number of these extra
A-test tasks can be calculated from [wq/(a - b)]—[w1/(m - b)]+1.
Similarly, we can obtain T;. Egs. (5), (8)-(12) are functions without

8 Z. Xiao, Y. Xiao / Future Generation Computer Systems 30 (2014) 1-13
Table 2
Notations.
T Total processing time of a job.
m Number of mappers.
w1 The initial job workload (i.e., data set volume before Map function).
wy The intermediate job workload (i.e., data set volume after Map function). Let w; be a function of w1, so we have w, = f,, (w1).
T Map phase time. It covers the entire Map phase and A-test for Map phase.
Ts Shuffle time. Since T; o< m, and T; o w,, we have function T; = f;(m, wy).
T, Reduce phase time. It covers the entire reduce phase and A-test for reduce phase.
To Total processing time that required by a customer. For example, the customer may need the job accomplished in 20 h, i.e., Tp = 20 h.
h Number of records to be checked during A-test. Based on Section 5, we have h = [logi}:ﬁ’r‘;)—‘ . The larger h is, the longer it needs for the A-test.
a Number of auditors.
n Number of workers in a customer’s working group; n is constant.
r Number of reducers.
b Size of each data block; the default value is 64 MB.
o Process time for one individual map task. « primarily depends on b, the host application, data set type, machine computation capability (e.g., CPU number,
RAM size, etc.). In this case, we only keep factor b, i.e., @ = f, (b).
B Process time for one individual reduce task. Similar to «, we let 8 = f(b).
o Process time for one individual A-test for a map task. Since @ o« w o h, we let & be a function of h, i.e., @ = f5 (h).
B Process time for one individual A-test for a reduce task. Since B oc w o< h, we let B be a function of h, i.e., B = f3(h).

concrete forms. To simplify the problem, we further assume the
following functions are linear. We have

w» :fw(wl) = kw * Wq (]3)
Ty = f(m, wy) = k - % (14)
a=fo(b) =ky b (15)
B =fy(b)=kg-b (16)
a=fz(h)=ks-h (17)
B =fz(h) =kz - h. (18)

The coefficients of the above linear functions will be specified
in evaluation.

8.3. Solve the OWAA problem

Accountability can be regarded as one type of quality of service
that can be selected by customers with multiple service levels.
Therefore, when the accountability degree increases, it needs a
longer amount of time to accomplish the job. Based upon the plans
we designed, there are two scenarios in which the relations among
m, r, and a differ.

Scenario 1: the auditors are dedicated testing machines that
are not included in the customer group working machines (i.e.,
m + r = n). In this case, the auditors are external to the customer
working group. Therefore, with more auditors, the faster the A-test
will perform. A bound qq is introduced to limit the number of
auditors. We then have a < ay.

Scenario 2: the auditors are included in the customer group
working machines (i.e.,, m+r+a = n). We consider the AG (Auditor
Group) size to be the key factor that affects the processing time.
The impact of the AG size on the processing time is twofold. First,
since the AG is constantly used to conduct the A-test, it occupies
some computing resources that are supposed to run MapReduce
tasks. With a larger AG size, it will take longer to accomplish a
certain amount of data set processing. On the other hand, the AG
size determines the time of the A-test, which is a major part of
the total processing time. Because of the larger AG, the test will
go faster. Therefore, there is a tradeoff of the AG size.

Based on the formulation, we have four cases to obtain T:

83.1. CaseA:ifa > o,p > f
Combining Egs. (3)-(6), we have
T = {ﬂ] -&+a+k5-&+’7ﬂ-‘ B+ B.
a-b m a-b
There are two sub-cases (i.e., A1 and A2), each representing a
scenario:

(19)

Al:If m 4+ r = n, then all terms but k; - % are relevant to m
or r; therefore, whenm = n — 1,r = 1, and a = ag, we have a
minimum of T as follows:

w1 _ w w2 -
Tin = oo ks +|77—‘:3+:3
ag-b n—1 a-b

A2:Ifm+r+a=n,wehaver = 1,andleta =n—m — 1.
Then, Eq. (19) can be written as:

w1 _ wy
T=|— - |. k.- —=
[(n—m—1)~b—‘ arati m

wr -
+’7(n—m—l)-b—"ﬂ+ﬂ'

Since 1 < m < n — 2, we can simplify (21) to the following:

(20)

(21)

C1

C3
T = + =4 (22)
m

C,—m
inwhichc; = (wy-@ +wy - B) /b, =n—1,c3 =k wy, ¢4 =
o + B.Therefore, T is transformed to a function of a single variable.
Based on calculus, we have
T = Cil _ Ci

(@ —m)*> m?
Let T = 0, since we havec; > 0,c; —m > 0,¢3 > 0,and m >
0.Bysolving T’ = 0,wehavem = mg = (c3 - \/C3) / (/€1 + /C3).
T = (;jﬂP + ,21% T"|;m, > 0, therefore, T can achieve the
minimum at this point. Since m, r, and a are integers. If0 < my <
1,then (m = 1, r = 1,a = n — 2) is the optimal solution. If
mg >n—2,then(m = n—2,r = 1,a = 1) is the optimal

solution.
_ [Imo] T(Tmo]) < T(lmo)) . _
If1 < mo < n—2,then(m = {ngJ T(tmoD) = T(lmo)), T =

n — m — 1)is the optimal solution.

1,a=

832 CaseB:ifa >a,B < B

Based upon the A-test scheme, this case is impossible because
once p, is determined, it has the same effect on A-test time for both
Map and Reduce. Therefore, it can either be ¢ > «, 8 > S, or
a < a,B < B.We can remove both case B and case C for this
reason.

833 CaseC:ifa <a, B >
Based on the analysis on case B, case C is impossible.

834. CaseD:ifad <a,B < B
There are four sub-cases, and each sub-case is discussed in two
scenarios.

Z. Xiao, Y. Xiao / Future Generation Computer Systems 30 (2014) 1-13 9

D1:If m < a,r < q, then

w _
T:{—1-‘-a+a+l<s +[-I B+ B. (23)
m-b
D11:If m + r = n, T is not related to a, meaning that a can be
as small as possible. We have a = min{ao, max{m, r}}.
T can be simplified as T = + "3 + pas, where p; =

P2 m _

(wa-B)/b,pp =n, ps = (w1 -a)/b+k- wz.andp4 =a+B.
A _ P2:4/P3

Similar to case A12, whenm = mg = NIZENL T can achieve the

minimum.

If0<mg < 1,then(m=1,r =n—1, a = min{ag, n — 1}) is
the optimal solution.

Ifmg >n—2,then,(m=n—1,r = 1,a = min{ag, n — 1}) is
the optimal solution.

_ [mol T(TmoD) < T(lmo)) . _
If1 < mo < n—2 then {m = {LmoJ T(fmg]) = T(Lmo), T =

n —m, a = min{ay, max{m, r}})is the optimal solution.
D12:1f m+r + a = n, T can be simplified as
T=_ Pt Py Pa. (24)
pp—a—m m
Therefore, T is a function of two variables. To find the minimum
of T, we have

aT P oT P b3
da (pp—m—a)?’ am (pp—m—a)? m?’
3T 2py 3T 2p1 2p3
0@ (pp-m-a® M (p—m-a® m’

aT 2pq
dadm C(pp—m—a)?

p1 _
Let 2T = 0,and 2L = 0, we have @2 _;_0)2 0

- = 0.
(pp—m—a? m?

Since p; > 0, there is no solution of the above equation set.
Therefore, there is no extreme point for T. By analyzing the trend
of function T, we conclude that T is at its minimum when the

following statements hold: (1) m/r = /ps//p1, 2) m + 1 +
a =n3m < ar < a (4)acan be as small as possible.

The optimal solution is (m = [min(

|mypi/ps].a=n—m—r).

D2:if r > a > m, then

T = { Wi —‘-a+&+ks-ﬂ+[&—|-,3
m-b m r-b

(o175l)7

D21: If m +r = n, T can be simplified as T(a, m) = -1 +

n—-m
L+ % 4qywhereqr = 2B —B).q2 =" + k- wy,q3 =

wzﬂ

_n __n_
2+4/p1/p3’ 1+ZVP1/P3)J ’

, Qs =a+ ﬁ We also have

o _ 4 T @1 @

da @ om = (n—m)2 m?’

3T g3 PT 0 oT
Fr am2 (n—m)> md daom

Let 2L = 0,and 2L = 0, we have no solution for a and m,
meaning that there is no extreme point of T. By analyzing the
trend of function T, we conclude that T is at its minimum when
the following statements hold: (}9% a is as large as possible but

a < ap,(2)r > a = m,(3) 5, = 0, from which we have

m = my = (n/32) / (V@ + +/@2). We can then determine the

optimal solution of T:

If0 <myg < 1,thenm = 1,r =n—1, a = min{ag, r — 1} is
optimal.

Ifmg > n—2,then{(m =n—2,r = 2,a = min{ag, 1}) is
optimal.

— JImol T(Imo]) < T(lmo)) . _
If1 = mo = n—2, then (m = [LmoJ T(fmo]) = T(lmo), T =
n —m, a = min{ag, r — 1})is optimal.

D22:Ifm+r+a_n we have

T(a,m) = —— 4+ 2 4 & 4 g, Then
ar___ e e T e @
oa (n—m_a)z a2’ am_(n_m_a)z 2
9°T _ 2q1 2q3
9> (n—m—a)3} @’
9T . 24, 2q,
T —m—a
ag‘aTm = (n_f,‘fla)g- Let % =0,and % = 0, we have
0 a3
n—-m—-a? @
4 Q@
Tmea

By solving the equation set, we have

a2
m=my=n- |———
di +q2+qs3
q3
a=aq=n- | ——.
qi+q2+qs3
Let F(a, m) = (agarm)z (322> (;22) then we can compute

F(ap, mp) < 0, and f{%ﬂao > 0. Therefore, T can achieve its
minimum. The optimal solution for this case is:

Ifag > mg,andr = n — mg — ap > dag, then m will be | mg | or
[mg], a will be |ag]| or [ag], whichever makes the minimal T; and
r=n—m-a.

Otherwise, there is no optimal solution.

D3:if m > a > r, then

w1 w1 w1 _ w>
=Lyl s (25) a2
m-b a+(a-b m-b +) @+ m
wy -
+[5] pB
D31:Ifm+r = n, T can be simplified as T(a, m) = - + 2 +

503 + 54, which is similar to case D21. We can determine the optlmal
solution as follows:
Let m = my = (n/52) / (/51 + +/52)-
If mg < n — my, there is no optimal solution.
[mol T([mol) < T(Lmol) . _ n—
lmo] T(Img1) = T(Lmg),
m, a = min{ag, m — 1})is the optimal solution
D32:Ifm+r+a=nT(am = —1—+2 + 2 + 54, where

sl= wiﬁ Sy = 1 (o — @)+ ks wy, 53 =2 T 54_a+/3
This case is 51milar to D22.

D4:if m > a,r > a, then

r=[Llat ([][5 +1) ek 2
+Lw2bw ﬁ+((awzbw [%]H).B.

— g71+%+%3+g4,inwhich
%-((X—O_l)“r‘ks'wzf

Ifmg > n — mg, then (m = {

T can be simplified as T(a, m)
&1 %'(ﬂ—ﬂ),gzz

wy @ wy- B .
g3le+ zb , & =a+p.

10 Z. Xiao, Y. Xiao / Future Generation Computer Systems 30 (2014) 1-13

Table 3
Solution table.
Case # Condition
m-+r=n m—+r+4+a=n
Aa>ap>p N N
B:&>a,;§<ﬂ N/A N/A
Ca<a,p>p NJA N/A
m<ar<a Vv N
- P r>a>m v N
Dia<a,f<p m>a>r J v
m>a,r>a Vv N
Table 4
Default parameter settings.
To 20h b 64 MB
wy 2TB P 0.1
Da 0.9 n 100
Ky 14 ks 1074
ke 0.16 kg 0.23
ks 1074 kg 1074
Table 5
Numeric results.
Para. Cond.
m+r=n m+r+a=n
Case (m, r,a) Trmin Case (m,r,a) Tinin
Default D11 (41,59,59) 52 D42 (57,39,4) 625
Py 0.5 D11 (41,59,59) 5.2 D42 (57,41,2) 5.99
0999 D11 (41,59,59) 52 D42 (57,36,7) 6.7
1 Al (99,1,50) 589 A2 (1,1,98) 832
N 50 D11 (20,30,30) 104 D42 (28,20,2) 1234
B 128 D11 (41,59,59) 5.2 D42 (57,41,2) 6.04
w; 8 D11 (41,59,59) 202 D42 (57,39,4) 25.03
D41: If m +r = n, the case is similar to case D21. We can

determine the optimal solution as follows:

Letm = m = (1) / (& + V&)

Ifo<mg <1, there is no optimal solution.

If mg > n — 2, there is no optimal solution.

[mo1 T(Tmo1) < T(Lmol)
Lmo] T([mo1) = T(Lmo)),
n —m, a = min{ag, min(m, r)})is the optimal solution.

D42:If m + r + a = n, the case is similar to case D22.

The problem set and its solutions can be summarized in Table 3.

Taking wordcount as the host application, the parameters can
be specified In Table 4:

For wordcount, each ‘word’ will be transformed to a key-value
pair like ‘word, 1’, meaning that 2 letters (i.e., ‘, and ‘1’) are added.
We assume that the average length of an English word is 5; the size
of each word will be increased by 2/5, and we have k,, = 7/5 =
1.4. Based on Table 3, we inject the parameters into the OWAA
problem, and obtain the numeric results in Table 5.

Figs. 8-10 describe how T changes in different cases when
parameters are default values. Fig. 8 shows case A2 with default
setting. In this case, we have T = 1ggo4moo + 2310 + 24.96. When
m increases, T keeps increasing. Therefore, (im = r = 1,a =
n—m—r) is the optimal solution. Fig. 9 shows case D11 with default
setting. In this case, we have T = 832900 4 320280 4 (046, T can
achieve the minimum, which is 5.2 h. Fig. 10 shows case D42 with
the default setting, we have T(a, m) = ;52223 4 31961 4 1725
0.046, and T, = 6.25 h.

If 1 §m0§n—2,then(m:{

9. A sentinel-based verification scheme

Juels [30] et al. proposed a sentinel-based scheme for data pos-
session. For A-test, sentinels can also be used for accuracy veri-
fication. In this section, we propose a sentinel-based verification

5

x 10 Case A2
15 ‘ ‘ ; : .
fol
£
= 10 L o
i<
£
17
3
8
s
®
S 5t i
i
O Y L
0 20 40 60 80 100
m - No. of Mappers
Fig. 8. Case A2 with default setting.
x10° Case D11

4 T T T

T - total processing time
n
T
1

0 L L 1 I I I I L L
0 10 20 30 40 50 60 70 80 90 100

m - No. of Mappers

Fig. 9. Case D11 with default setting.

100

1007 20

Fig. 10. Case D42 with default setting.

scheme as another implementation for the A-test. Unlike the orig-
inal A-test approach, which is generally a replay-and-match ap-
proach, we embed sentinels into the input data. If a malicious
worker manipulates the data, there is a chance that the sentinels
are corrupted as well. The output shows how well the sentinels are
treated during processing, and it also provides evidence of misbe-
havior.

9.1. Motivation

The A-test is efficient and effective under the assumption that
a malicious worker will randomly tamper with the Map/Reduce
function (i.e., each key-value pair has an equal chance of being
falsified). Under this assumption, the A-test can achieve good
performance by only checking the initial part of the entire data.
However, hackers/malicious users may not behave this way; they
can choose their styles of manipulation for the data. Therefore,
where and how a piece of data will be falsified is incomprehensible

Z. Xiao, Y. Xiao / Future Generation Computer Systems 30 (2014) 1-13 11

in reality. In this section, we change the assumption to “input data
can be manipulated in anywhere with any manner”. The A-test has
limitations since it only scans the initial part of the input file and
allows the rest to stay out of the law.

9.2. Design of sentinel-based verification

There are a few requirements that a sentinel should satisfy: (1)a
sentinel can be processed by regular Map/Reduce functions (i.e., it
is essentially a key-value pair that is valid to Map/Reduce). (2) A
sentinel should own a unique key that will not mix with other keys
because a key’s uniqueness facilitates the tracing and verification.
Otherwise all duplicated keys will be reduced to one key through
the reduce function. (3) A sentinel can be inserted into any place of
the input file and removed after the process without much effort.
(4) A sentinel cannot break the original content of an input file to
prevent it from introducing new errors. For example, if a sentinel
is inserted within a word in a text input file, then the word will be
split. A word “good” may become “go [sentinel/ od”, which will
be treated as three distinct words by the Map/Reduce function.
(5) A working machine has no idea where and how a sentinel is
embedded.

Fig. 11 describes the sentinel-based verification scheme. Two
new functions are defined: S_Insert (i.e., sentinel insert) and
S_Verify (i.e., sentinel verification). The S_Insert and S_Verify
functions are implemented as wrappers to the data set. They do
not affect any other processes during Map/Reduce. The data set
has already been embedded with sentinels before Map/Reduce.
Therefore, requirement 5 can be satisfied.

9.2.1. S_Insert function

A parameter called insert frequency (F) is defined to determine
how often a sentinel should be inserted. “F = 100" means one
sentinel will be inserted for every 100 keys. The sentinel generation
process can satisfy requirements 1 and 2. The way a sentinel is
inserted is key-based, and this means that we can make sure
no keys will be broken during insertion (i.e., requirement 4 is
satisfied). S_insert is described in Algorithm 4.

Algorithm 4. S_insert

S_Insert(int F, Data block):
// F: insert frequency
get reader from block;
int count = 0;
Index start, end;
Key key = null;
Bool insert = true;
Reference ref = new Reference(); // create a reference copy
while ((key = reader.nextKey())! = null)
++count;
if (insert) start = key.index();
if (count ¥ F ==0)
// insert a sentinel among the last F keys
end = key.index();
Sentinel s = getSentinel ();
Ref.add(s);
int pos = (new Random()).nextInt(F);
// insert s to a random position between start and end
insert(block, start, end, pos, s);

During S_insert, every time a sentinel is inserted into the data
set, it is also added into a data structure called the reference copy,
which will be used for verification purposes. When the data set
is being Mapped/Reduced, the sentinels in the reference copy are
processed in the same way but not in the same machine where the
data set is processed. Keys differ from application to application.

Even plain text may choose various encoding standards (e.g., ASCII,
Unicode, etc.). Some applications may limit keys within a small
range (e.g., key space is 8 bit). Therefore, it is not possible to design
a universal method for sentinel generation.

9.2.2. S_Verify function

The purpose of S_Verify is twofold: (1) to verify the correctness
of Map/Reduce task and generate evidence if inconsistency
is reported and (2) to remove sentinels from data set after
verification. The S_Verify primitive is described in Algorithm 5.

Algorithm 5. S_verify

S_Verify(DataSet ds, ReferenceCopy rc):
for Sentinel s in rc

Sentinel tmp = findSentinel(ds, s.getKey());

if (Is.match(tmp))
EvidenceGen(s, tmp, ds);
break;

else // s matches tmp
ds.remove(tmp)

To verify the accuracy of a task, we need to compare the
sentinels in the reference copy and the sentinels embedded in the
output data to check if they can match. If they do not match, which
means that the Mapper/Reducer has manipulated the data, then a
piece of evidence will be generated to prove the inconsistency.

9.2.3. Judgments

Pros—the good part is that there is no need to replay the
Map/Reduce function.

Cons—It is not possible to guarantee complete accountability
because this scheme does not check the accuracy of the original
data. Therefore, false positives may exist.

9.2.4. Performance analysis

Since there is one sentinel for every F key-value pairs, the
probability of any key-value pair being a sentinel is 1/F. When a
malicious worker misbehaves, a continuous piece of data is likely
to be manipulated. Let | denote the length of a continuous piece of
data (i.e., the number of key-value pairs is [) that has been falsified.
The chance that there are no sentinels in the data piece is (1—1/F)".
Therefore, the probability that a corrupted data piece with length
I will be detected is 1 — (1 — 1/F)". The detection probability is
plotted in Fig. 12.

10. Evaluation

We have implemented a prototype of Accountable MapReduce
based upon Hadoop [7] and have tested it in both our local lab and
the Utah Emulab testbed.

10.1. Experiment setup

We set up a VLAN with 20 PCs in the Emulab testbed to
deploy the Accountable MapReduce. We simulated some malicious
machines in the system to perform Map/Reduce mess-ups. The
MapReduce application that we are using in our experiments is
wordcount.

10.2. Experiment result

Fig. 13 depicts how the AG size affects the processing time when
P-Accountability = 1. Because this experiment’s purpose is to test
how the A-test will impact processing time, we did not insert any
malicious nodes. We built a 5-node cluster to run MapReduce, and

12

Data
Block

Z. Xiao, Y. Xiao / Future Generation Computer Systems 30 (2014) 1-13

.’l B \\
@*\ S_Insert - Q/
~ ’J

Map P . k
Output —H\ S_Verify "
Intermediate
Data Shuffie

Reduce
Output

A
) Output

0.9

0.8

0.7

0.6

Detection Probability

0.5-

0.4} ——1=2000 1
—#— | = 4000
— | = 6000
0 500 1000 1500 2000 2500 3000

f - insert frequency

3500 4000 4500 5000

Fig. 12. Detection probability with sentinel-based verification.

80 T

Processing Time (sec)

0 | L | L | | | | |
1.5 2 2.5 3 3.5 4

Auditor Group Size

Fig. 13. AG size and processing time when P = 1.

we varied the size of AG to observe how the processing time would
change. This shows that when there are no auditors (AG# = 0), the
MapReduce system is not accountable, but the processing time is
minimal because there is no extra overhead added by the A-test.
The increase of the AG size will bring extra overhead to the job
(i.e., they conduct the A-test). Since P = 1 in this case, the job will
be entirely duplicated. The more auditors we have, the quicker the
A-test will finish. A straightforward observation is that when the
AG size is equal to the number of workers, each worker will be
tested by an individual auditor so that some waiting time will be
saved. Also the processing time will be minimal.

Fig. 14 shows how P-Accountability affects the processing time.
P = 0 means that the system is not accountable. We also reduce
the P-value from 1 to 0.99 to observe how this change will affect
the processing time. We still use a 5-node cluster to run wordcount
(data size = 50 M). In order to rule out the interference of the re-
submit/re-process time, this experiment is also free of malicious
nodes. The result shows that the lower P-Accountability decreases
significantly the workload of the A-test because fewer records will
be checked. As a result, each mapper/reducer will get tested very

80

60

40

200}

Processing time (sec)

L
25 3 3.5 4
Number of Auditors

Fig. 14. P-Accountability and processing time.

Processing time (sec)

L
1.5 2
Number of Auditors

Fig. 15. Malicious nodes and processing time.

quickly. Also, the AG size will not become an issue since equivalent
performance can be achieved with fewer auditors.

When malicious nodes are taken into account, we need to
add the re-submit/re-process/re-test time into the total processing
time. The cluster still contains 5 workers. The AG size is 2, and the
input data is 100 M. In Fig. 15, we compared the total processing
times when P = 0, 0.99, and 1. In the chart, the gap between curve
(P = 1) and curve (P = 0.99) means that the test time is greatly
reduced. It is also obvious that with the more malicious nodes we
have, the processing time will be longer because once malicious
nodes are detected, they will be exposed and no longer take the
Map/Reduce tasks. As a result, the remaining good workers will
carry out the tasks that need to be reprocessed. The AG must also
re-test the tasks.

False positives may exist when P is less than 1 because the
Map/Reduce task will not be fully tested. However, based upon our
assumption, if the malicious nodes randomly cause errors during
Map/Reduce, then they can be detected with high probability
(determined by P). Another point is that the major performance
improvement has been saved even when P is close to 1 (e.g., P =
0.999). In our experiment (20 repetitions), we found that when
P = 0.99 and when the probability of a bad node altering a record
(denoted by p;,) is 0.01, the A-test runs very well without missing
any malicious node. We also tested an extreme case in which P =
0.99 and p,, = 0.0001, and this means that the malicious node

Z. Xiao, Y. Xiao / Future Generation Computer Systems 30 (2014) 1-13 13

will alter one record out of every 10000 records. In this case, we
did observe false positives.

11. Conclusion

In this paper, we proposed Accountable MapReduce as an
additional component for the current MapReduce model to
support accountability. Accountable MapReduce employs an
Auditor Group (AG) to conduct an A-test on every worker in the
system without being noticed by the workers. If malicious behavior
occurs, the AG is able to detect it and provide verifiable evidence.
To improve the performance, we introduce P-Accountability in the
A-test to trade the degree of accountability with efficiency. We
formalize the Optimal Worker and Auditor Assignment (OWAA)
problem, which has a target that is to find the optimal numbers
of workers and auditors so that the total processing time can
minimized. We implement a prototype of Accountable MapReduce
in the Hadoop platform. Our evaluation results show that our
scheme can be practically and efficiently utilized in realistic cloud
systems.

Acknowledgment

This work was supported in part by the US National Science
Foundation (NSF) under grants CNS-0737325, CNS-0716211, CCF-
0829827, and CNS-1059265.

References

[1] J. Dean,S. Ghemawat, MapReduce: simplified data processing on large clusters,
in: OSDI'04: Proceedings of the 6th Conference on Symposium on Operating
Systems Design & Implementation, USENIX Association, Berkeley, CA, USA,

2004.

[2] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee,
D.A. Patterson, A. Rabkin, I. Stoica, et al., Above the Clouds: A Berkeley View of
Cloud Computing, EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28, 2009.

[3] Z.Xiao,Y.Xiao, Security and privacy in cloud computing, IEEE Communications
Surveys & Tutorials 15 (2) (2013) 843-859. Second Quarter.

[4] M.Barua, X. Liang, R. Lu, X. Shen, ESPAC: enabling security and patient-centric
access control for eHealth in cloud computing, International Journal of Security
and Networks 6 (2/3) (2011) 67-76.

[5] D. Sun, G. Chang, C. Miao, X. Wang, Modelling and evaluating a high
serviceability fault tolerance strategy in cloud computing environments,
International Journal of Security and Networks 7 (4) (2012) 196-210.

[6] D. Gottfrid, Self-service, prorated super computing fun! The New York Times.
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-
computing-fun/?scp=1&sq=self%20service%20prorated&st=cse.

[7] http://hadoop.apache.org/.

[8] Department of Defense, Trusted computer system evaluation criteria,
Technical Report 5200.28-STD, Department of Defense, 1985.

[9] AR. Yumerefendi,].S. Chase, The role of accountability in dependable
distributed systems, in: Proc. of HotDep, 2005.

[10] AR. Yumerefendi,].S. Chase, Trust but verify: accountability for network
services, in: Proc. of 11th Workshop on ACM SIGOPS 2004, p. 37.

[11] Y. Xiao, Flow-net methodology for accountability in wireless networks, IEEE
Network 23 (5) (2009) 30-37.

[12] D. Takahashi, Y. Xiao, Retrieving knowledge from auditing log files for
computer and network forensics and accountability, (Wiley Journal) Security
and Communication Networks 1 (2) (2008) 147-160.

[13] Y. Xiao, Accountability for wireless LANs, ad hoc networks, and wireless mesh
networks, [IEEE Communications Magazine 46 (4) (2008) 116-126.

[14] J. Liu, Y. Xiao, Temporal accountability and anonymity in medical sensor
networks, ACM/Springer Mobile Networks and Applications (MONET) 16 (6)
(2011) 695-712. Special Issue: Wireless and Personal Communications.

[15] Y. Xiao, K. Meng, D. Takahashi, Accountability using flow-net: design,
implementation, and performance evaluation, (Wiley Journal of) Security and
Communication Networks 5 (1) (2012) 29-49. Special Issue on Security and
Privacy in Emerging Information Technologies.

[16] Z. Xiao, Y. Xiao, PeerReview re-evaluation for accountability in distributed
systems or networks, International Journal of Security and Networks 7 (1)
(2012) 40-58.

[17] Z. Xiao, Y. Xiao, P-Accountable networked systems, in: INFOCOM IEEE
Conference on Computer Communications Workshops, 2010, pp. 1-5.

[18] J.Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters,
Communications of the ACM 51 (2008) 107-113.

[19] C.T. Chu, SK. Kim, Y.A. Lin, Y.Y. Yu, G. Bradski, AY. Ng, K. Olukotun,
Map-reduce for machine learning on multicore, in: Advances in Neural
Information Processing Systems 19: Proceedings of the 2006 Conference, 2007,
pp. 281-288.

[20] B. He, W. Fang, Q. Luo, N.K. Govindaraju, T. Wang, Mars: a MapReduce
framework on graphics processors, in: Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, 2008,
pp. 260-269.

[21] S. Papadimitriou,]. Sun, Disco: distributed co-clustering with Map-Reduce:
a case study towards petabyte-scale end-to-end mining, in: Eighth IEEE
International Conference on Data Mining, 2008, ICDM’08, 2008, pp. 512-521.

[22] J. Ekanayake, S. Pallickara, G. Fox, MapReduce for data intensive scientific
analyses, in: IEEE Fourth International Conference on eScience, 2008,
eScience’08, 2008, pp. 277-284.

[23] L Roy, S. Setty, A. Kilzer, V. Shmatikov, E. Witchel, Airavat: security and privacy
for MapReduce, in: Proc. USENIX Symposium on Networked Systems Design
and Implementation, 2010, pp. 297-312.

[24]]. Schlesinger, Cloud security in Map/Reduce, 2009.
http://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-
jason_schlesinger-cloud_security.pdf.

[25] W.Wei,]. Dy, T. Yu, X. Gu, SecureMR: a service integrity assurance framework
for MapReduce, in: Proceedings of the 2009 Annual Computer Security
Applications Conference, 2009, pp. 73-82.

[26] A.Haeberlen, A case for the accountable cloud, ACM SIGOPS Operating Systems
Review 44 (2010) 52-57.

[27] C. Wang, Y. Zhou, A collaborative monitoring mechanism for making a
multitenant platform accountable, in: Hotcloud 2010.

[28] L. Lamport, R. Shostak, M. Pease, The Byzantine generals problem, ACM
Transactions on Programming Languages and Systems 4 (3) (1982) 382-401.

[29] A.Haeberlen, P. Kouznetsov, P. Druschel, PeerReview: practical accountability
for distributed systems, in: Proc. of ACM SIGOPS 2007.

[30] A.Juels, B.S. Kaliski, PORs: proofs of retrievability for large files, in: ACM CCS,
2007, pp. 584-597.

Zhifeng Xiao is an Assistant Professor in the Department
of Computer Science at the Penn State Erie, the Behrend
College. He obtained the Ph.D. degree in Computer Science
at the University of Alabama in 2013. He received
the bachelor degree in Computer Science at Shandong
University, China, in 2008. His research interests are in
design and analysis of secure distributed and Internet
systems.

Yang Xiao Yang Xiao worked in industry as a MAC
(Medium Access Control) architect involving the IEEE
802.11 standard enhancement work before he joined
Academia. Dr. Xiao currently is a professor of Department
of Computer Science at The University of Alabama. He
was a voting member of IEEE 802.11 Working Group
from 2001 to 2004. He is an IEEE Senior Member.
He serves as a panelist for the US National Science
Foundation (NSF), Canada Foundation for Innovation
(CFI)’s Telecommunications expert committee, and the
American Institute of Biological Sciences (AIBS), as well
as a referee/reviewer for many national and international funding agencies. His
research areas are security and communications/networks. He has published more
than 200 refereed journal papers (including 50 IEEE/ACM transactions papers) and
over 200 refereed conference papers and book chapters related to these research
areas. Dr. Xiao’s research has been supported by the US National Science Foundation
(NSF), U.S. Army Research, The Global Environment for Network Innovations (GENI),
Fleet Industrial Supply Center-San Diego (FISCSD), FIATECH, and The University
of Alabama’s Research Grants Committee. He currently serves as Editor-in-Chief
for International Journal of Security and Networks (IJSN) and International Journal
of Sensor Networks (IJSNet) (SCI-index). He was the founding Editor-in-Chief for
International Journal of Telemedicine and Applications (IJTA) (2007-2009). Dr. Xiao
had directed 8 doctoral dissertations in the past and is currently supervising 7
Ph.D. students/candidates in computer security and networking areas. Dr. Xiao also
supervised 19 M.S. graduates in the past.

http://refhub.elsevier.com/S0167-739X(13)00146-5/sbref1
http://refhub.elsevier.com/S0167-739X(13)00146-5/sbref2
http://refhub.elsevier.com/S0167-739X(13)00146-5/sbref3
http://refhub.elsevier.com/S0167-739X(13)00146-5/sbref4
http://refhub.elsevier.com/S0167-739X(13)00146-5/sbref5
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/?scp%3D1%26sq%3Dself%20service%20prorated%26st%3Dcse
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/?scp%3D1%26sq%3Dself%20service%20prorated%26st%3Dcse
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/?scp%3D1%26sq%3Dself%20service%20prorated%26st%3Dcse
http://hadoop.apache.org/
http://refhub.elsevier.com/S0167-739X(13)00146-5/sbref8
http://refhub.elsevier.com/S0167-739X(13)00146-5/sbref11
http://refhub.elsevier.com/S0167-739X(13)00146-5/sbref12
http://refhub.elsevier.com/S0167-739X(13)00146-5/sbref13
http://refhub.elsevier.com/S0167-739X(13)00146-5/sbref14
http://refhub.elsevier.com/S0167-739X(13)00146-5/sbref15
http://refhub.elsevier.com/S0167-739X(13)00146-5/sbref16
http://refhub.elsevier.com/S0167-739X(13)00146-5/sbref18
http://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-jason_schlesinger-cloud_security.pdf
http://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-jason_schlesinger-cloud_security.pdf
http://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-jason_schlesinger-cloud_security.pdf
http://refhub.elsevier.com/S0167-739X(13)00146-5/sbref26
http://refhub.elsevier.com/S0167-739X(13)00146-5/sbref28

	Achieving Accountable MapReduce in cloud computing
	Introduction
	Related work
	MapReduce background
	Programming model
	Fault tolerance
	Worker failure
	Master failure
	Byzantine fault tolerance

	Problem statement
	Attack model

	Accountable MapReduce
	Design principles
	Assumptions
	Accountable MapReduce design
	Correctness checking scheme
	Auditor group
	Accountability test
	 A -test with P -Accountability

	Implementation of Accountable MapReduce
	Implementation of the master
	Implementation of the auditor group
	Auditor Group Head (GH)
	Auditor Group Member (GM)

	 A -test: Plan B
	The design of A -test Plan B
	The design of puzzle generation

	Other considerations

	Analysis of Accountable MapReduce
	How many workers and auditors should be assigned?
	Formulation of Optimal Worker and Auditor Assignment (OWAA) problem
	Solve the OWAA problem
	Case A: if α >α, β >β
	Case B: if α >α, β <β
	Case C: if α <α, β >β
	Case D: if α <α, β <β

	A sentinel-based verification scheme
	Motivation
	Design of sentinel-based verification
	S_Insert function
	S_Verify function
	Judgments
	Performance analysis

	Evaluation
	Experiment setup
	Experiment result

	Conclusion
	Acknowledgment
	References

