
Future Generation Computer Systems 30 (2014) 1–13
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Achieving Accountable MapReduce in cloud computing
Zhifeng Xiao a, Yang Xiao b,∗

a Behrend College, The Pennsylvania State University, Erie, PA 16563, USA
b The University of Alabama, Tuscaloosa, AL 35487-0290, USA

h i g h l i g h t s

• Propose Accountable MapReduce, which forces each machine to be held responsible for its behavior.
• To optimize the utilization resource, we formalize the Optimal Worker and Auditor Assignment (OWAA) problem.
• Our evaluation results show that the A-test can be practically and effectively applied to existing cloud platforms employing MapReduce.

a r t i c l e i n f o

Article history:
Received 19 October 2011
Received in revised form
13 June 2013
Accepted 17 July 2013
Available online 31 July 2013

Keywords:
Accountable
MapReduce
Cloud computing

a b s t r a c t

MapReduce is a programming model that is capable of processing large data sets in distributed
computing environments. The original MapReduce model was designed to be fault-tolerant in case of
various network abnormalities. However, fault-tolerance does not guarantee that each working machine
will be completely accountable; when nodes are malicious, they may intentionally misrepresent the
processing result during mapping or reducing, and they may thus make the final results inaccurate and
untrustworthy. In this paper, we propose Accountable MapReduce, which forces each machine to be held
responsible for its behaviors. In our approach, we set up a group of auditors to perform an Accountability
Test (A-test) that checks all of the working machines and detects malicious nodes in real time. The A-test
can be implemented with different options depending upon how the auditors are assigned. To optimize
the utilization resource, we also formalize the OptimalWorker and Auditor Assignment (OWAA) problem,
which is aimed at finding the optimal number of workers and auditors in order to minimize the total
processing time. Our evaluation results show that the A-test can be practically and effectively applied to
existing cloud platforms employing MapReduce.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

MapReduce [1] has been widely used as a powerful data pro-
cessing model. It has efficiently solved a wide range of large-scale
computing problems, including distributed grep, distributed sort,
web-link graph reversal, web-access log stats, document cluster-
ing, machine learning, etc. Cloud computing presents a unique op-
portunity for batch-processing and analyzing terabytes of data that
would otherwise take hours to finish [2–5]. Most cloud providers
(e.g., Google, Yahoo!, Facebook, etc.) adopt MapReduce to build
multitenant computing environments. Usually, cloud customers
have a large set of data to be processed under certain time con-
straints. They must provide a client with the MapReduce program
and with data that is ready to be processed. Cloud providers main-
tain thousands of working machines to fulfill the data processing
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jobs submitted by their customers. As an example [6], The New
York Times used 100Amazon Elastic Compute Cloud (Amazon EC2)
instances and a Hadoop [7] application to process 4 TB of raw im-
age TIFF data (stored in Amazon Simple Storage Service (Amazon
S3)) into 11 million finished PDFs in 24 h at a computation cost of
about $240 (not including bandwidth).

In such a computing environment, the cloud customers out-
source their data to the cloud, which performs the storing and
computing operations required by the customers. Customersmust,
therefore, fully trust the cloud provider. However, a cloud provider
cannot guarantee that its data center (which may have thousands
of working machines) is 100% trustworthy. Some machines may
become malicious if they are attacked and controlled by hackers;
malicious machines will not faithfully carry out the tasks assigned
to them. As a result, the processing result is no longer correct or
trustworthy. In theNewYork Times example,malicious nodesmay
mess up the image conversion process so that the PDFs do not
match the original TIFF images. It is even harder for the New York
Times to check if these PDFs are correctly converted because of the
tremendous data size of the PDFs. In this paper, we explore the use
of accountability to address this problem.

http://dx.doi.org/10.1016/j.future.2013.07.001
http://www.elsevier.com/locate/fgcs
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http://crossmark.dyndns.org/dialog/?doi=10.1016/j.future.2013.07.001&domain=pdf
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Accountability has been a longstanding concern of trustworthy
computer systems [8], and it has recently been elevated to a
first class design principle for dependable network systems [9,10].
Accountability implies that an entity should be held responsible for
its own actions or behaviors [11–16]. In the MapReduce scenario,
accountability means that all working machines (e.g., mappers
and reducers) will be responsible for the tasks that they have
completed.

In this paper, we propose building an Accountable MapReduce
to make the cloud computing platform trustworthy. We use an
Accountability Test (A-test), which checks all working machines
when a job is undertaken and detects malicious nodes in real time.
The A-test is performed by a group of trusted machines, which
are called the Auditor Group (AG). The AG takes advantage of
the determination of the user’s MapReduce program to replay the
tasks executed by working machines. The MapReduce framework
makes it possible for an auditor to acquire the input data block
andprocessing resultswithout knowledge of theworkingmachine.
Therefore, auditors are free to replay the tasks that have been
finished. If the replay output does not match the original output,
it means that the worker is returning bad results, and the evidence
is the combination of the task, input, original output, and replay
output.

A challenge of Accountable MapReduce is the reduction of
the overhead introduced by the A-test. In theory, the A-test can
guarantee the detection of any misbehavior by fully duplicating
each task, and this causes the processing time to at least double.
To make the A-test more efficient, we abandon pursuing 100%
accountability, which guarantees exposure of every malicious
node but has a high cost. We adopt P-Accountability [17], which
quantifies the degree of accountability. We use P-Accountability
for system efficiency. Based upon the batch-processing property
ofMapReduce, the performance of theA-testwith P-Accountability
can be greatly improved by decreasing the degree of accountability
by less than 1%.

We summarize the contributions of this paper as follows:
1. We propose building an Accountable MapReduce to detect

malicious nodes. Verifiable evidencewill be generated to ensure
that the malicious nodes cannot deny their behavior.

2. Instead of pursuing perfect accountability, A-test allows the
system to achieve P-Accountability with less overhead and a
higher performance.

3. We formalize the Optimal Worker and Auditor Assignment
(OWAA) problem, which is aimed at finding the optimal
numbers of workers and auditors in order to minimize the total
processing time.

4. We also present another sentinel-based verification scheme
for implementing the A-test. Our analysis shows the sentinel
scheme is not as good as the original scheme.

5. We have implemented a prototype of Accountable MapReduce
on Hadoop. The experiment’s results show that our approach is
both efficient and effective.
The rest of this paper is structured as follows: Related work

will be reviewed in Section 2. Then, we will introduce MapReduce
in Section 3. In Section 4, we address the accountability issue
in MapReduce and define the problem that is our focus. Our
solution, Accountable MapReduce, is discussed in Section 5. In
Section 6, we give the implementation details. A-test is presented
in Section 7. Analysis of Accountable MapReduce is given in
Section 8. We present a sentinel-based verification scheme in
Section 9. Evaluation is provided in Section 10. Finally,we conclude
the paper in Section 11.

2. Related work

Its ability to process data intensive tasks has made MapReduce
increasingly important in distributed computing areas [18]. Chu
et al. [19] applied MapReduce to machine learning on multi-core
platforms. He et al. [20] implemented Mars, a MapReduce frame-
work, in graphics processors. Papadimitriou et al. [21] applied
MapReduce to the area of data mining; they designed Disco,
which is a practical approach for distributed data pre-processing.
Ekanayake et al. [22] adopted the MapReduce technique for two
scientific data analyses, which are high energy physics data analy-
ses, and for K -means clustering. Existing work focuses on utilizing
MapReduce to solve different problems in various domains. How-
ever, few have considered accountability issues in MapReduce.
Accountable MapReduce is an attempt to address the issue of un-
trustworthy nodes and their behavior in MapReduce.

Security issues in MapReduce have been discussed in [23,24].
Wei et al. [25] present SecureMR, a practical service integrity
assurance framework for MapReduce. SecureMR provides a
decentralized, replication-based integrity verification scheme for
ensuring the integrity of MapReduce in open systems. SecureMR is
intended to achieve 100% integrity of MapReduce, which can affect
its performance.Webelieve that for someapplications, efficiency is
more important than 100% integrity. Therefore, instead of pursuing
100% accountability, we allow the customers to choose the level
of accountability that they need based upon their applications. It
turns out that slightly decreasing the expectation of accountability
leads to a significant improvement of systemperformance in terms
of job processing time.

Accountability has been regarded as an important issue in cloud
computing. Trustworthy relationships between the cloud provider
and cloud customers have been addressed in [26,27]. The customer
places his computation and data on machines that he cannot
directly control; the provider agrees to run a service with details
he/she does not know [26]. Therefore, accountability is employed
to determine whether or not the Service Level Agreement (SLA) is
fulfilled. If it is not, evidence should be provided in order to prove
which unit is responsible. MapReduce is a popular computing
framework in cloud platforms. In this paper, we build Accountable
MapReduce,which solves the subset of problems addressed in [26].
Accountable MapReduce is able to detect malicious workers and
provide verifiable evidence.

3. MapReduce background

3.1. Programming model

With the MapReduce programming model, programmers only
need to specify two functions: Map and Reduce. The Map function
receives a key/value pair as input and generates intermediate
key/value pairs to be further processed. The Reduce function
merges all the intermediate key/value pairs associated with the
same (intermediate) key and then generates final output.

There are three main roles: the master, mappers, and reduc-
ers. The single master acts as the coordinator responsible for task
scheduling, job management, etc. MapReduce is built upon a dis-
tributed file system (DFS), which provides distributed storage.
Fig. 1 shows the execution process of MapReduce. The input data
is split into a set of M blocks, which will be read by M mappers
through DFS I/O. Each mapper will process the data by parsing
through the key/value pair, and then, they will generate the in-
termediate results that are stored in its local file system. The in-
termediate result will be sorted by the keys so that all pairs with
the same key will be grouped together (the shuffle phase). If the
memory size is limited, an external sort might be used to deal with
large amounts of data at one time. The locations of the intermedi-
ate results will be sent to the master who notifies the reducers to
prepare to receive the intermediate results as their input. Reducers
then use the Remote Procedure Call (RPC) to read data from map-
pers. The user defined reduce function is then applied to the sorted
data; basically, key pairswith the same keywill be reduced in some
way depending upon the user defined reduce function. Finally, the
output will be written to DFS.
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Fig. 1. MapReduce working flow.

3.2. Fault tolerance

MapReduce is designed to be fault tolerant because failures are
a common phenomena in large scale distributed computing.

3.2.1. Worker failure
The master pings every mapper and reducer periodically. If no

response is received for a certain amount of time, the machine is
marked as failed. The ongoing task and any tasks completed by this
mapper will be re-assigned to another mapper and executed from
the very beginning. Completed reduce tasks do not need to be re-
executed because their output is stored in the global file system.

3.2.2. Master failure
Since the master is a single machine, the probability of master

failure is very small. MapReduce will re-start the entire job if the
master fails.

3.2.3. Byzantine fault tolerance
A Byzantine fault [28] is an arbitrary fault that occurs during the

execution of an algorithm by a distributed system. It encompasses
both omission failures (e.g., crash failures, failing to receive a
request, or failing to send a response) and commission failures
(e.g., processing a request incorrectly, corrupting local state, and/or
sending an incorrect or inconsistent response to a request).

The MapReduce framework can suffer both omission failures
and commission failures. Omission failures can be properly solved
by the MapReduce built-in fault tolerance mechanisms. However,
commission failure is not considered in the original version.

4. Problem statement

4.1. Attack model

Fault-tolerance will address node failures, such as a worker not
responding to themaster or aworkermachine totally crashing, etc.
To address node failures, the master learns the task fail event and
then takes further action (e.g., it re-executes the failedMap/Reduce
task on another machine). However, fault-tolerance is unable to
detect amalicious node intending to alter theMap/Reduce function
and return inaccurate results. We illustrate this type of attack with
an example.
Wordcount is a typical MapReduce application. Its job is to
count the occurrences of each word in large input text data. If
there are malicious working machines in the system, the output
file, which contains word counts of every word, is inaccurate.

Consider the wordcount example in Fig. 2. Assume that the sys-
tem is free of malicious nodes. There are three mappers, each of
which maps one line of the file. After the mapping function, we
have the map output as the intermediate result. Then, the inter-
mediate results will be shuffled (sorted by key) and read by reduc-
ers (five, in this case), which reduce the intermediate results and
generate the final output.

If all units faithfully execute their tasks, the final output will
be accurate. Otherwise, we cannot trust the results because the
malicious units may alter part of the results. For example, if a
mapper is malicious, it has multiple ways to alter the output:
(1) filter some keys, (2) create keys that do not exist in the input
file, (3) modify the value intentionally, etc. A malicious reducer is
able to cause similar errors.

To solve the problem, we propose Accountable MapReduce,
which ensures that

(1) Malicious nodes intending to alter the processing result will
be exposed; additionally, Accountable MapReduce is able to
provide verifiable evidence to ensure that the detection is
reputable.

(2) The failed jobs will be re-directed to another working node
until it is verified as correct.

5. Accountable MapReduce

5.1. Design principles

A key function of Accountable MapReduce is detecting mali-
cious nodes that generate inaccurate results. We now present the
principles that guided our design:

(1) The accountability mechanism should be concealed so that
malicious nodes are unaware ofwhat is happening.We assume
that machines may be fully controlled by attackers, and they
may be smart enough to discover this; if a machine is aware
of anything abnormal, it takes countermeasures to cover itself.
It follows that we leave any machine alone when an A-test is
ongoing.

(2) The overhead brought by the accountabilitymechanism should
be minimized to reduce processing time.

(3) When a malicious node is caught, the system should be able
to provide verifiable evidence to show that the node is indeed
being malicious.

5.2. Assumptions

The design of Accountable MapReduce is based upon the fol-
lowing assumptions:

(1) The data set provided by cloud customers can be processed by
MapReduce.

(2) The Auditor Group (AG) is a trustworthy domain, and this
means that the machines of the AG are free of any malicious
actions.
Fig. 2. A wordcount example of MapReduce.
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(3) Aworker cannot be reclaimed until the entire job is completed.
When the customer confirms the job is done, all machines will
be released back to the cloud.

(4) A malicious node randomly performs bad actions. This means
that the faulty parts of the processing result also distribute
randomly throughout the entire result. In addition, there may
be multiple faulty parts in the processing results. Once a fault
area is found, the test will stop because we already have
evidence to expose the bad node.

(5) All input data, intermediate results, and output datawill not be
removed until the entire job is finished.

(6) Data from a cloud customer is correct.

5.3. Accountable MapReduce design

5.3.1. Correctness checking scheme
PeerReview [29] provides accountability for distributed sys-

tems. It assumes that every node in the system is a deterministic
state machine (i.e., for some certain input, the output will be the
same). Two critical technologies that are employed by PeerReview
are tamper-evident logging and witnessing. A tamper-evident log
is implemented by a hash chain, which guarantees that any mod-
ification to the log will be detected so that a node has to record
its behavior faithfully. A witness, which is also a regular node, is
able to check the correctness of other nodes that it is witnessing
by replaying the log files kept in each node. As a result, malicious
nodes will eventually be detected and exposed to all other correct
nodes. PeerReview is applicable to most distributed applications.
However, it is not applicable to MapReduce. The major concern
is overhead. First, the input of a large task might be at the TB or
even PB level (even though there are thousands of workers, the
split task also has a large workload), and the output depends upon
the input. This means that all input and output events will have to
be logged so that the witness is capable of replaying log files and
checking their correctness. Second, for witness checking, a node
has to upload its log segment to multiple witnesses, which is ex-
tremely bandwidth-consuming.

The idea of correctness checking is simple. Assume that the
auditor is a trustworthy node; both the worker and the auditor
are regarded as deterministic state machines, and the protocol is
running on them. If the input data is the same (adopting tamper-
evidence logs to ensure it), the output should be the same as well.
After comparing output (from the worker) and output’ (from the
auditor), the system is able to determine whether the worker is
good or not. The evidence is the combination of input, output’, and
output; additionally, it is verifiable to any other auditors.

5.3.2. Auditor group
The Auditor Group (AG) carries out an Accountability Test

(i.e., an A-test, which will be introduced next) to detect malicious
nodes. Normally, as shown in Fig. 3, cloud resourceswill be divided
intomultiple slices, each ofwhich is rented by a customer. A slice is
a group of working machines assigned to a customer. Wemaintain
an AG manager for the entire cloud and one AG for each slice that
runsMapReduce. The reason for associating each slice with one AG
is to conserve the privacy and independence of customers.

The AG Manager is a coordinator that conducts AG creation,
management, and disposal. After the AG manager becomes aware
of the customer’s data size, timing, and other requirements, it will
determine the AG size and then create an AG for the slice.

Each AG is internally structured as a cluster. The head node is
the Group Head (GH), and the member node is the Group Member
(GM). The GH randomly picks up workers as test targets. The
master has a protocol with the GH to provide all the information
needed for an A-test. The GH assigns A-test tasks to the available
GMs, which are the actual machines that accomplish the tasks and
report their status.
Fig. 3. Auditor group in cloud platform.

Fig. 4. Accountability test.

5.3.3. Accountability test
The A-test is built upon the correctness checking scheme that

we adopt in this paper. The AG is the entity fulfilling the A-test.
The AG consists of a set of trustworthy workers assigned by the AG
manager; these are machines dedicated to performing the A-test
as shown in Fig. 4. The working flow of the A-test is as follows:

1. The A-test is started when Map/Reduce starts.
2. A group of idle auditors will be chosen as the auditor group

of a certain slice. The AG forms a cluster, and only the GH
interacts with themaster. The GH is thus able to request the job
information from the master. Therefore, it knows (1) the input
data and output (i.e., the intermediate data before it is shuffled
and sorted) of eachmapper; (2) the input (i.e., the intermediate
data after it is shuffled and sorted) and output (i.e., the final
result) of each reducer. This information is essential for the
auditors to check the correctness of each worker.

3. After the job begins, the GM will receive test tasks from
the master, which will be notified once a worker finishes its
task. Based upon the processing sequence of Map/Reduce, the
mapperswill finish first, and then, the reduce process is started.
Therefore, in the initial period, mappers will be tested, and then
reducers will be tested after the mappers.

4. After the GH receives a test task of checking a worker, it finds
an available GM to carry out the test. Each check is executed as
follows:
(a) The GM will find corresponding input and output based

upon the task type (i.e., Map/Reduce).
(b) The GM will process the input data again and compare its

output with the original one to check for inconsistency. If
there is an inconsistency, it indicates that the worker being
tested is malicious.
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Fig. 5. PA vs. x.

(c) The GM reports the test results to the GH, which will report
back to the master.

5. If a worker is detected asmalicious, the task it was assignedwill
be resubmitted to another worker so that the job continues.

5.3.4. A-test with P-Accountability
If the auditor is trustworthy and processes all the input of the

worker, then the system can definitely determine whether the
worker ismalicious or not. Thismeans that the task assigned to the
worker is fully replicated. In the system view, the entire job will be
executed twice, once by regular workers and once by the auditors.
However, the high overhead of processing the job one time shows
that it will take even longer and bring more overhead to process
it twice. Therefore, instead of pursuing perfect accountability, the
A-test provides P-Accountability [17], which gives the customers
options. P-Accountability trades the degree of accountability for
efficiency.

Definition of P-Accountability: we define P-Accountability as
the probability that a malicious worker will be detected when it
tampers with the processing result.

Let PA denote P-Accountability, and let w denote the number of
records in an input file, which can be either a raw data block for
a map operation or a partition of intermediate results for a reduce
operation. Assume that for any one record, a node has probability
pm of being malicious (i.e., tampering with the result); this will
cause the corresponding output to be inaccurate. Variable xmeans
that if we want to achieve PA, we need to check at least x records.
If PA = 1, x is equal to w, meaning that the entire input file is
checked, then

1− (1− pm)x ≥ PA. (1)

We have

x ≥

log(1−PA)

(1−pm)


. (2)

If PA = 0.9999 and pm = 0.01, we have x = 917, which means
that only 917 records need to be checked. Under the assumption
that amalicious node randomly (with probability pm) tamperswith
the Map/Reduce result, we observe that x will not be affected by
input data size, and only pm and PA will be related to x. Fig. 5 shows
how x changes when PA increases from 0 to 1. When PA increases,
the auditor needs to check more records to achieve a certain
degree of PA. We also observe that a smaller pm indicates that
there are more records that an auditor needs to check because the
malicious node has less of a chance to tamperwith theMap/Reduce
operation.

Some features of the A-test are as follows:
(1) It is practical to implement the A-test, which makes the

most of the existing properties of MapReduce. One important
Table 1
Input and output in MapReduce.

Input Worker Output

Map bi mi {hi,1, hi,2, . . . , hi,k}

Reduce {h1,i, h2,i, . . . , hn,i} ri oi

task for A-test is to acquire the input and output data
of mappers/reducers, and the master has already kept this
information.

(2) It is an online test, and thismeans that themalicious nodeswill
be detected as early as possible. The flow of the A-test ensures
that a worker will be tested once it finishes.

(3) Workers do not know that they are being tested. Therefore, it
is hard to take countermeasures to hide bad behavior.

(4) With P-Accountability, the A-test will be very efficient since a
lower P-Accountability will significantly cut down the records
that need to be checked.

One limitation is that false positives may occur if P-Account-
ability is less than 1. In real world MapReduce applications, we can
adjust the parameters so that the probability of a false positive is
close to zero.

6. Implementation of Accountable MapReduce

6.1. Implementation of the master

The master is the coordinator that holds all information
necessary to conduct the A-test. The master has to maintain
the following lists: mappers (we denote the mappers list as M),
reducers (i.e., set R), input set (i.e., B), intermediate result set (i.e.,
H), and output set (i.e., O). Also, the master node is aware of every
input/output relationship existing in the system. Therefore, a four-
tuple set will be kept in order to respond to the requests from
the AG head: {⟨type, ID, input, output⟩}, where type is the worker
type (i.e., mapper or reducer), ID is the worker’s identity, and input
and output depend on the worker type. Table 1 shows the input
and output in MapReduce. Let the map output {hi,1, hi,2, . . . , hi,k}

be the intermediate result before it is shuffled and sorted; let the
reduce input {h1,i, h2,i, . . . , hn,i} be the intermediate result after it
is shuffled and sorted. These sets are not complete in the beginning.
Therefore, themaster will maintain themwhile the job is running.

6.2. Implementation of the auditor group

Fig. 6 demonstrates the message flow during the A-test. Based
upon the MapReduce primitives, the master will be notified
whenever a worker is done with its job. To perform the A-test, the
master also notifies the GH by sending Message 1. There are two
cases of Message 1 based upon the worker type:

• Case 1: If the worker is a mapper mi, then Message1 = (MAP,
mi, bi, {hi,1, hi,2, . . . , hi,k}), which includes all information about
the input and output ofmi. Message 2 is an assignmentmessage
of the A-test. The GH will randomly pick up a worker that has
not yet been tested to generate a test assignment. Suppose
that mj is picked as the test object, then Message 2 = (MAP,
mj, bj, {hj,1, hj,2, . . . , hj,k}). To accomplish the test, the GM
reads input block bj from DFS (i.e., action 3-a) intermediate
result {hj,1, hj,2, . . . , hj,k} from mapper mj (i.e., action 3-b). The
GM is then able to perform the A-test.
• Case 2: If theworker is a reducer ri, thenMessage 1 = (REDUCE,

ri, {h1,i, h2,i, . . . , hn,i}, oi). Suppose that rj is also picked as the
test object, thenMessage 2 = (REDUCE, rj, {h1,j, h2,j, . . . , hn,j},
oj); action 3-b: read {h1,j, h2,j, . . . , hn,j} from the local disk of
every mapper; action 3-c: read oj from DFS. The GM is then
ready to conduct the test.
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Fig. 6. Communication between the AG and other MapReduce entities. Numbers
1–3 represent messages.

6.2.1. Auditor Group Head (GH)
The GHmaintains a list, L, of test tasks; L is a FIFO queue andwill

be updated in real time.When a GM is available, the GHwill assign
a new test task (i.e., the head of L) to it.When the GH is notified that
worker wi is done, the GH produces a test task for wi immediately
so that eachworker will be tested at least once. The GH collects the
test results from the GM and reports to the master if a bad node is
detected.

6.2.2. Auditor Group Member (GM)
The intermediate result of MapReduce is stored in the workers’

local disks, which are controlled by the workers. If these disks are
accessed by other machines, then a malicious worker may become
suspicious and take some actions in response. Therefore, the first
time a CM reads data from these local disks, it makes a copy of the
data on the DFS so that in future accesses, all data can be obtained
from the DFS. For convenience, we use the same symbol to denote
the intermediate result.

Algorithm 1. A-test
Algorithm: A-test
Require: pm, PA, task l
x←


log(1−PA)

(1−pm)


// number of records to be checked

If l.type=MAP
For record i in l.input and i < x
tmp←map(l.input[i])
If tmp is not equal to l.output[i]

Report inconsistent MAP
If l.type= REDUCE

while(l.input[x].key= l.input[++x].key);
for key k in l.input

tmp←reduce(k, list(v))
if tmp is not equal to l.output(k)

report inconsistent reduce

7. A-test: Plan B

Instead of setting up dedicated auditors, another option is to
choose a set of random idle machines from the server firm to
perform the A-test for all customer groups. The design benefits and
drawbacks can be described as follows:
• Benefits:
◦ Better resource utilization. In a large data center, at any spe-

cificmoment, there are a number ofmachines swiping in/out.
The idlemachines can be utilized to perform theA-test,which
will not take long if the P-value is less than 1.
◦ Plan B does not occupy customers’ computation resource.

Plan B separates customers’ computation and accountability
mechanism, and itmaintains the independence of customers’
business computing.
• Drawbacks:
◦ Less predictable. The size of the dedicated auditor group is

fixed so that it is easier to evaluate the A-test performance.
If the A-test workload is too much, the admin may add more
auditors to share the workload. In contrast, Plan B presents
high uncertainty. The performance of the A-test depends
upon the available machines at a particular time whereas
the number of available machines is dynamic all the time.
Therefore, it is more difficult for Plan B to make adjustments
for performance management.

7.1. The design of A-test Plan B

With Plan B, themastermaintains a pool of auditors, which con-
sists of the idle machines. Once a machine is swiped out and re-
claimed, it reports to themaster, which puts it into the pool. When
themaster receives a task (Map/Reduce) completionmessage from
theworkers, it randomly picks a number ofmachines from the pool
as auditors to perform the A-test. The auditors will be returned to
the pool when they complete their test missions and when they
send the results to the master, which can analyze and conclude
whether the worker being tested is malicious or not.

The structure of Plan B differs from Plan A in that the auditors
are not dedicated machines to perform A-test. The auditor pool is
composed of idle machines that were just released from their jobs.
This means that the pool is highly dynamic since once an auditor
accomplishes the A-test, it will quit the auditor pool and be ready
to receive new Map/Reduce tasks.

Once an idle machine reports to the master, it becomes a can-
didate auditor. However, there is no guarantee of the correctness
of a candidate auditor because any worker could be malicious.
Therefore, to verify its correctness, the master will generate a puz-
zle, and allow a candidate auditor solve it. A puzzle is a random
Map/Reduce task generated by a program. If a candidate auditor
solves the puzzle, it becomes a former auditor, which is allowed
to accept A-test tasks from the master. Auditors will be challenged
constantly during theA-test period. Every challenge is a puzzle that
needs to be solved.

7.1.1. The design of puzzle generation
Puzzle generation is a reverse procedure of a Map/Reduce task.

It takes the output of a Map/Reduce task as input and generates
one possible input of a Map/Reduce task as its output, which will
be the main content of the puzzle. For example, if wordcount
is considered to be the host application and the input text for
Map function is ‘‘good weather is good’’, then the Map output is
{(good, 1), (weather, 1), (is, 1), (good, 1)}, and the reduce output
is {(good, 2), (is, 1), (weather, 1)}. For the puzzle generation, ei-
ther a Map puzzle or a reduce puzzle will be generated. Given
{(good, 1), (weather, 1), (is, 1), (good, 1)} as the input, the out-
put plain text has multiple possibilities, and the program will pick
a random one like ‘‘is good good weather’’ as the puzzle. The pro-
cess can be applied to generate a reduce puzzle as well. A puzzle
makes no difference with the regular A-test tasks. An auditor will
normally be challenged multiple times within the entire A-test. If
any one of them shows an anomaly (i.e., results do not match), the
auditor will be isolated to receive further investigation.

The puzzle generation can be specified as follows:

R_Map(list(K2, intermediate_value))→(K1, V1)
R_Reduce(list(V3))→(K2, list(intermediate_value))

In this process, R_Map and R_Reduce are two primitives for
the Map puzzle and reduce puzzle, respectively. Notice that
both R_Map and R_Reduce are one-to-many mappings (i.e., given
certain input, there are multiple output versions). Therefore,
R_Map and R_Reduce will randomly choose one possible result as
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a puzzle. With wordcount as an example, these two functions can
be specified in Algorithms 2–3 as follows:

Algorithm 2: R_Map for the wordcount example
R_Map(list⟨K2, V2⟩):

// K2: a word
// V2: an integer with value 1
String result = null;
For each⟨key, value⟩pair in list:
result.append(key+ ‘‘’’);

Algorithm 3: R_Reduce for the wordcount example
R_Reduce(list⟨K3, V3⟩)

// K3: a word
// V3: number of occurrences of K3
List result = null;
For each⟨key, value⟩pair in list:
int i= 0;
for (; i < value;++i)

result.add(⟨key, 1⟩);

7.2. Other considerations

There is a chance that the auditors are malicious, and if they
are, incorrect test results will be generated. For example, if worker
A finishes itsmap task, and themaster allows three auditors, t1, t2,
and t3, test A’s task. However, if there are malicious auditors in the
three, then the test results may be inconsistent or even confusing.
There aremultiple possibilities for how the auditors behave: (1) all
of them are clean; (2) some/all of them are malicious and behave
like a worker A; (3) some/all of them are malicious, and none of
them behave identical to A; (4) situations 3 and 4 combined.

There is overhead. The cost of Plan B is that since more than
one auditor is involved for the A-test, the computational cost of the
A-test is multiple times more than that of Plan A.

The auditor pool is highly dynamic because every idle worker
only stays for a short while as a temporary auditor and other
auditors swipe in/out frequently.

8. Analysis of Accountable MapReduce

8.1. How many workers and auditors should be assigned?

Accountable MapReduce introduces auditors to the platform.
There is no doubt that the existence of auditors will introduce
extra overhead to the entire computation process. The remaining
question is how many workers and auditors should be assigned
beforeMapReduce in order to accomplish the job efficiently. Based
upon the plans that we discussed in previous sections, there are
two cases based upon whether auditors are part of the customer
working group.

In this section, we formulate the Optimal Worker and Auditor
Assignment (OWAA) problem, which is aimed at minimizing the
total processing time with the given MapReduce parameter set.
Notations of the OWAA problem are given in Table 2.

8.2. Formulation of OptimalWorker and Auditor Assignment (OWAA)
problem

We have the following assumptions for the OWAA problem:

• The reduced workload for each Reducer can be equally
partitioned.
• We assume that there is no hardware difference between

workers and auditors.
Fig. 7. Pipelining A-test and Map function.

• Workload is the only factor that determines the process time
for Map/Reduce/A-test. This indicates that if two Mappers have
a task workload with the same size, their processing time will
be the same (the time can be regarded as average process time).

Fig. 7 shows the pipelining of the A-test and Map/Reduce.
We can observe that normally each mapper will process multi-
ple map tasks. According to the assumption, each map will take
an equal amount of time, which is denoted by α. Each map task
will be checked once it is finished. In this figure, T -1 represents
the time slot to examine Map-1 through A-test. The average A-test
time is denoted by ᾱ. If ᾱ < α, Tm is mainly determined by (α ×
the number of map tasks per mapper); otherwise Tm is mainly de-
termined by (ᾱ× the number of A-test tasks per auditor). We can
formulate the OWAA problem as follows:

Find three-tuple ⟨a,m, r⟩ to

Minimize T = Tm + Ts + Tr (3)

in which 0 < m < n, 0 < r < n, 0 < a, and m, r, a are integers.

Tm =



 w1

a · b


· ᾱ + α ᾱ > α w1

m · b


· α + ᾱ a ≥ m, ᾱ ≤ α w1

m · b


· α +

 w1

a · b


−

 w1

m · b


+ 1


· ᾱ

a < m, ᾱ ≤ α

(4)

Ts = fs(m, w2) (5)

Tr =



 w2

a · b


· β̄ + β β̄ > β w2

r · b


· β + β̄ a ≥ r, β̄ ≤ β w2

r · b


· β +

 w2

a · b


−

 w2

r · b


+ 1


· β̄

a < r, β̄ ≤ β

(6)

h =

log(1−pA)

(1−pm)


(7)

w2 = fw(w1) (8)
α = fα(b) (9)
β = fβ(b) (10)

ᾱ = fᾱ(h) (11)

β̄ = fβ̄(h). (12)

Eq. (3) gives the objective function T (i.e., total processing time
of a job), which consists of themap phase time (i.e., Tm), the shuffle
phase time (i.e., Ts), and the reduce phase time (i.e., Tr ). Eq. (4)
calculates Tm. Based on our analysis on Fig. 7, if ᾱ > α, Tm is
mainly determined by the A-test time, which is obtained from
⌈w1/(a · b)⌉ · ᾱ. If ᾱ < α, Tm is mainly determined by the map
time, which is calculated from ⌈w1/(m · b)⌉ · α. In addition, the
number of auditors affects the calculation of Tm. If the number of
auditors are no less than the number of mappers (i.e., a ≥ m),
one ᾱ is added into Tm (e.g., T -4 in Fig. 7); if a < m, each auditor
will be assigned more A-test tasks, and the number of these extra
A-test tasks can be calculated from ⌈w1/(a · b)⌉−⌈w1/(m · b)⌉+1.
Similarly, we can obtain Tr . Eqs. (5), (8)–(12) are functions without



8 Z. Xiao, Y. Xiao / Future Generation Computer Systems 30 (2014) 1–13
Table 2
Notations.

T Total processing time of a job.
m Number of mappers.
w1 The initial job workload (i.e., data set volume before Map function).
w2 The intermediate job workload (i.e., data set volume after Map function). Let w2 be a function of w1 , so we have w2 = fw(w1).
Tm Map phase time. It covers the entire Map phase and A-test for Map phase.
Ts Shuffle time. Since Ts ∝ m, and Ts ∝ w2 , we have function Ts = fs(m, w2).
Tr Reduce phase time. It covers the entire reduce phase and A-test for reduce phase.
T0 Total processing time that required by a customer. For example, the customer may need the job accomplished in 20 h, i.e., T0 = 20 h.
h Number of records to be checked during A-test. Based on Section 5, we have h =


log(1−PA)

(1−pm)


. The larger h is, the longer it needs for the A-test.

a Number of auditors.
n Number of workers in a customer’s working group; n is constant.
r Number of reducers.
b Size of each data block; the default value is 64 MB.
α Process time for one individual map task. α primarily depends on b, the host application, data set type, machine computation capability (e.g., CPU number,

RAM size, etc.). In this case, we only keep factor b, i.e., α = fα(b).
β Process time for one individual reduce task. Similar to α, we let β = fβ (b).
ᾱ Process time for one individual A-test for a map task. Since ᾱ ∝ w ∝ h, we let ᾱ be a function of h, i.e., ᾱ = fᾱ(h).
β̄ Process time for one individual A-test for a reduce task. Since β̄ ∝ w ∝ h, we let β̄ be a function of h, i.e., β̄ = fβ̄ (h).
concrete forms. To simplify the problem, we further assume the
following functions are linear. We have
w2 = fw(w1) = kw · w1 (13)

Ts = fs(m, w2) = ks ·
w2

m
(14)

α = fα(b) = kα · b (15)
β = fβ(b) = kβ · b (16)

ᾱ = fᾱ(h) = kᾱ · h (17)

β̄ = fβ̄(h) = kβ̄ · h. (18)
The coefficients of the above linear functions will be specified

in evaluation.

8.3. Solve the OWAA problem

Accountability can be regarded as one type of quality of service
that can be selected by customers with multiple service levels.
Therefore, when the accountability degree increases, it needs a
longer amount of time to accomplish the job. Based upon the plans
we designed, there are two scenarios in which the relations among
m, r , and a differ.

Scenario 1: the auditors are dedicated testing machines that
are not included in the customer group working machines (i.e.,
m+ r = n). In this case, the auditors are external to the customer
working group. Therefore, withmore auditors, the faster the A-test
will perform. A bound a0 is introduced to limit the number of
auditors. We then have a ≤ a0.

Scenario 2: the auditors are included in the customer group
workingmachines (i.e.,m+r+a = n).We consider theAG (Auditor
Group) size to be the key factor that affects the processing time.
The impact of the AG size on the processing time is twofold. First,
since the AG is constantly used to conduct the A-test, it occupies
some computing resources that are supposed to run MapReduce
tasks. With a larger AG size, it will take longer to accomplish a
certain amount of data set processing. On the other hand, the AG
size determines the time of the A-test, which is a major part of
the total processing time. Because of the larger AG, the test will
go faster. Therefore, there is a tradeoff of the AG size.

Based on the formulation, we have four cases to obtain T :

8.3.1. Case A: if ᾱ > α, β̄ > β

Combining Eqs. (3)–(6), we have

T =
 w1

a · b


· ᾱ + α + ks ·

w2

m
+

 w2

a · b


· β̄ + β. (19)

There are two sub-cases (i.e., A1 and A2), each representing a
scenario:
A1: If m + r = n, then all terms but ks ·
w2
m are relevant to m

or r; therefore, when m = n − 1, r = 1, and a = a0, we have a
minimum of T as follows:

Tmin =


w1

a0 · b


· ᾱ + α + ks ·

w2

n− 1
+

 w2

a · b


· β̄ + β. (20)

A2: If m + r + a = n, we have r = 1, and let a = n − m − 1.
Then, Eq. (19) can be written as:

T =


w1

(n−m− 1) · b


· ᾱ + α + ks ·

w2

m

+


w2

(n−m− 1) · b


· β̄ + β. (21)

Since 1 ≤ m ≤ n− 2, we can simplify (21) to the following:

T =
c1

c2 −m
+

c3
m
+ c4, (22)

in which c1 =

w1 · ᾱ + w2 · β̄


/b, c2 = n− 1, c3 = ks ·w2, c4 =

α+β . Therefore, T is transformed to a function of a single variable.
Based on calculus, we have

T ′ =
c1

(c2 −m)2
−

c3
m2

.

Let T ′ = 0, since we have c1 > 0, c2 −m > 0, c3 > 0, andm >
0. By solving T ′ = 0,wehavem = m0 =


c2 ·
√
c3


/
√

c1 +
√
c3


.

T ′′ = 2c1
(c2−m)3

+
2c3
m3 , T ′′|m0 > 0, therefore, T can achieve the

minimum at this point. Since m, r , and a are integers. If 0 < m0 <
1, then ⟨m = 1, r = 1, a = n − 2⟩ is the optimal solution. If
m0 > n − 2, then ⟨m = n − 2, r = 1, a = 1⟩ is the optimal
solution.

If 1 ≤ m0 ≤ n−2, then ⟨m =

⌈m0⌉ T (⌈m0⌉) < T (⌊m0⌋)
⌊m0⌋ T (⌈m0⌉) ≥ T (⌊m0⌋),

r = 1, a =
n−m− 1⟩is the optimal solution.

8.3.2. Case B: if ᾱ > α, β̄ < β

Based upon the A-test scheme, this case is impossible because
once pA is determined, it has the same effect on A-test time for both
Map and Reduce. Therefore, it can either be ᾱ > α, β̄ > β , or
ᾱ < α, β̄ < β . We can remove both case B and case C for this
reason.

8.3.3. Case C: if ᾱ < α, β̄ > β

Based on the analysis on case B, case C is impossible.

8.3.4. Case D: if ᾱ < α, β̄ < β

There are four sub-cases, and each sub-case is discussed in two
scenarios.
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D1: Ifm ≤ a, r ≤ a, then

T =
 w1

m · b


· α + ᾱ + ks ·

w2

m
+

 w2

r · b


· β + β̄. (23)

D11: If m + r = n, T is not related to a, meaning that a can be
as small as possible. We have a = min{a0,max{m, r}}.

T can be simplified as T = p1
p2−m

+
p3
m + p4, where p1 =

(w2 · β) /b, p2 = n, p3 = (w1 · α) /b + ks · w2, and p4 = ᾱ + β̄ .
Similar to case A12, when m = m0 =

p2·
√
p3

√
p1+
√
p3

, T can achieve the
minimum.

If 0 < m0 < 1, then ⟨m = 1, r = n− 1, a = min{a0, n− 1}⟩ is
the optimal solution.

Ifm0 > n− 2, then, ⟨m = n− 1, r = 1, a = min{a0, n− 1}⟩ is
the optimal solution.

If 1 ≤ m0 ≤ n − 2, then ⟨m =

⌈m0⌉ T (⌈m0⌉) < T (⌊m0⌋)
⌊m0⌋ T (⌈m0⌉) ≥ T (⌊m0⌋),

r =
n−m, a = min{a0,max{m, r}}⟩is the optimal solution.

D12: If m+ r + a = n, T can be simplified as

T =
p1

p2 − a−m
+

p3
m
+ p4. (24)

Therefore, T is a function of two variables. To find theminimum
of T , we have

∂T
∂a
=

p1
(p2 −m− a)2

,
∂T
∂m
=

p1
(p2 −m− a)2

−
p3
m2

,

∂2T
∂a2
=

2p1
(p2 −m− a)3

,
∂2T
∂m2
=

2p1
(p2 −m− a)3

+
2p3
m3

,

∂T
∂a∂m

= −
2p1

(p2 −m− a)3
.

Let ∂T
∂a = 0, and ∂T

∂m = 0, we have


p1

(p2 −m− a)2
= 0

p1
(p2 −m− a)2

−
p3
m2 = 0.

Since p1 > 0, there is no solution of the above equation set.
Therefore, there is no extreme point for T . By analyzing the trend
of function T , we conclude that T is at its minimum when the
following statements hold: (1) m/r =

√
p3/
√
p1, (2) m + r +

a = n, (3) m ≤ a, r ≤ a, (4) a can be as small as possible.
The optimal solution is ⟨m =


min( n

2+
√
p1/p3

, n
1+2
√
p1/p3

)


, r =
m
√
p1/p3


, a = n−m− r⟩.

D2: if r > a ≥ m, then

T =
 w1

m · b


· α + ᾱ + ks ·

w2

m
+

 w2

r · b


· β

+

 w2

a · b


−

 w2

r · b


+ 1


· β̄.

D21: If m + r = n, T can be simplified as T (a,m) =
q1

n−m +
q2
m +

q3
a + q4, where q1 =

w2
b (β − β̄), q2 =

w1·α
b + ks · w2, q3 =

w2·β̄
b , q4 = ᾱ + β̄ . We also have

∂T
∂a
= −

q3
a2

,
∂T
∂m
=

q1
(n−m)2

−
q2
m2

,

∂2T
∂a2
=

q3
a3

,
∂2T
∂m2
=

q1
(n−m)3

+
q2
m3

,
∂T

∂a∂m
= 0.

Let ∂T
∂a = 0, and ∂T

∂m = 0, we have no solution for a and m,
meaning that there is no extreme point of T . By analyzing the
trend of function T , we conclude that T is at its minimum when
the following statements hold: (1) a is as large as possible but
a ≤ a0, (2) r > a ≥ m, (3) ∂T

∂m = 0, from which we have
m = m0 =


n
√
q2


/
√

q1 +
√
q2


. We can then determine the

optimal solution of T :
If 0 < m0 < 1, then m = 1, r = n − 1, a = min{a0, r − 1} is
optimal.

If m0 > n − 2, then ⟨m = n − 2, r = 2, a = min{a0, 1}⟩ is
optimal.

If 1 ≤ m0 ≤ n − 2, then ⟨m =

⌈m0⌉ T (⌈m0⌉) < T (⌊m0⌋)
⌊m0⌋ T (⌈m0⌉) ≥ T (⌊m0⌋),

r =
n−m, a = min{a0, r − 1}⟩is optimal.

D22: If m+ r + a = n, we have
T (a,m) =

q1
n−m−a +

q2
m +

q3
a + q4. Then

∂T
∂a
=

q1
(n−m− a)2

−
q3
a2

,
∂T
∂m
=

q1
(n−m− a)2

−
q2
m2

,

∂2T
∂a2
=

2q1
(n−m− a)3

−
2q3
a3

,

∂2T
∂m2
=

2q1
(n−m− a)3

−
2q2
m3

,

∂T
∂a∂m =

2q1
(n−m−a)3

. Let ∂T
∂a = 0, and ∂T

∂m = 0, we have
q1

(n−m− a)2
−

q3
a2
= 0

q1
(n−m− a)2

−
q2
m2
= 0.

By solving the equation set, we have
m = m0 = n ·


q2

q1 + q2 + q3

a = a0 = n ·


q3
q1 + q2 + q3

.

Let F(a,m) =


∂T
∂a∂m

2
−


∂2T
∂a2


·


∂2T
∂m2


, then we can compute

F(a0,m0) < 0, and ∂2T
∂a2
|a0 > 0. Therefore, T can achieve its

minimum. The optimal solution for this case is:
If a0 ≥ m0, and r = n − m0 − a0 > a0, then m will be ⌊m0⌋ or

⌈m0⌉, a will be ⌊a0⌋ or ⌈a0⌉, whichever makes the minimal T ; and
r = n−m− a.

Otherwise, there is no optimal solution.
D3: ifm > a ≥ r , then

T =
 w1

m · b


· α +

 w1

a · b


−

 w1

m · b


+ 1


· ᾱ + ks ·

w2

m

+

 w2

r · b


· β + β̄.

D31: Ifm+ r = n, T can be simplified as T (a,m) =
s1

n−m +
s2
m +

s3
a +s4, which is similar to case D21.We can determine the optimal
solution as follows:

Letm = m0 =

n
√
s2


/
√

s1 +
√
s2


.

If m0 < n−m0, there is no optimal solution.
If m0 ≥ n − m0, then ⟨m =


⌈m0⌉ T (⌈m0⌉) < T (⌊m0⌋)
⌊m0⌋ T (⌈m0⌉) ≥ T (⌊m0⌋),

r = n −
m, a = min{a0,m− 1}⟩is the optimal solution.

D32: Ifm+ r + a = n, T (a,m) =
s1

n−m−a +
s2
m +

s3
a + s4, where

s1 = w2·β
b , s2 =

w1
b · (α − ᾱ)+ ks · w2, s3 =

w1·ᾱ
b , s4 = ᾱ + β̄ .

This case is similar to D22.
D4: ifm > a, r > a, then

T =
 w1

m · b


· α +

 w1

a · b


−

 w1

m · b


+ 1


· ᾱ + ks ·

w2

m

+

 w2

r · b


· β +

 w2

a · b


−

 w2

r · b


+ 1


· β̄.

T can be simplified as T (a,m) =
g1
r +

g2
m +

g3
a + g4, in which

g1 =
w2
b · (β − β̄), g2 =

w1
b · (α − ᾱ)+ ks · w2,

g3 =
w1 · ᾱ

a
+

w2 · β̄

b
, g4 = ᾱ + β̄.
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Table 3
Solution table.

Case # Condition
m+ r = n m+ r + a = n

A: ᾱ > α, β̄ > β
√ √

B: ᾱ > α, β̄ < β N/A N/A
C: ᾱ < α, β̄ > β N/A N/A

D: ᾱ < α, β̄ < β

m ≤ a, r ≤ a
√ √

r > a ≥ m
√ √

m > a ≥ r
√ √

m > a, r > a
√ √

Table 4
Default parameter settings.

T0 20 h b 64 MB
w1 2 TB pm 0.1
pA 0.9 n 100
kw 1.4 ks 10−4
kα 0.16 kβ 0.23
kᾱ 10−4 kβ̄ 10−4

Table 5
Numeric results.

Para. Cond.
m+ r = n m+ r + a = n
Case ⟨m, r, a⟩ Tmin Case ⟨m, r, a⟩ Tmin

Default D11 ⟨41, 59, 59⟩ 5.2 D42 ⟨57, 39, 4⟩ 6.25
PA 0.5 D11 ⟨41, 59, 59⟩ 5.2 D42 ⟨57, 41, 2⟩ 5.99

0.999 D11 ⟨41, 59, 59⟩ 5.2 D42 ⟨57, 36, 7⟩ 6.7
1 A1 ⟨99, 1, 50⟩ 5.89 A2 ⟨1, 1, 98⟩ 8.32

N 50 D11 ⟨20, 30, 30⟩ 10.4 D42 ⟨28, 20, 2⟩ 12.34
B 128 D11 ⟨41, 59, 59⟩ 5.2 D42 ⟨57, 41, 2⟩ 6.04
w1 8 D11 ⟨41, 59, 59⟩ 20.2 D42 ⟨57, 39, 4⟩ 25.03

D41: If m + r = n, the case is similar to case D21. We can
determine the optimal solution as follows:

Letm = m0 =

n
√
g2


/
√

g1 +
√
g2


.

If 0 < m0 < 1, there is no optimal solution.
If m0 > n− 2, there is no optimal solution.
If 1 ≤ m0 ≤ n − 2, then ⟨m =


⌈m0⌉ T (⌈m0⌉) < T (⌊m0⌋)
⌊m0⌋ T (⌈m0⌉) ≥ T (⌊m0⌋),

r =
n−m, a = min{a0,min(m, r)}⟩is the optimal solution.

D42: If m+ r + a = n, the case is similar to case D22.
The problem set and its solutions can be summarized in Table 3.
Taking wordcount as the host application, the parameters can

be specified In Table 4:
For wordcount, each ‘word’ will be transformed to a key–value

pair like ‘word, 1’, meaning that 2 letters (i.e., ‘,’ and ‘1’) are added.
We assume that the average length of an Englishword is 5; the size
of each word will be increased by 2/5, and we have kw = 7/5 =
1.4. Based on Table 3, we inject the parameters into the OWAA
problem, and obtain the numeric results in Table 5.

Figs. 8–10 describe how T changes in different cases when
parameters are default values. Fig. 8 shows case A2 with default
setting. In this case, we have T = 1060400

99−m +
280
m + 24.96. When

m increases, T keeps increasing. Therefore, ⟨m = r = 1, a =
n−m−r⟩ is the optimal solution. Fig. 9 shows caseD11with default
setting. In this case, we have T = 644000

100−m +
320280

m + 0.046, T can
achieve the minimum, which is 5.2 h. Fig. 10 shows case D42 with
the default setting, we have T (a,m) = 642993

100−m−a +
319561

m +
1725
a +

0.046, and Tmin = 6.25 h.

9. A sentinel-based verification scheme

Juels [30] et al. proposed a sentinel-based scheme for data pos-
session. For A-test, sentinels can also be used for accuracy veri-
fication. In this section, we propose a sentinel-based verification
Fig. 8. Case A2 with default setting.

Fig. 9. Case D11 with default setting.

Fig. 10. Case D42 with default setting.

scheme as another implementation for the A-test. Unlike the orig-
inal A-test approach, which is generally a replay-and-match ap-
proach, we embed sentinels into the input data. If a malicious
worker manipulates the data, there is a chance that the sentinels
are corrupted as well. The output shows howwell the sentinels are
treated during processing, and it also provides evidence of misbe-
havior.

9.1. Motivation

The A-test is efficient and effective under the assumption that
a malicious worker will randomly tamper with the Map/Reduce
function (i.e., each key–value pair has an equal chance of being
falsified). Under this assumption, the A-test can achieve good
performance by only checking the initial part of the entire data.
However, hackers/malicious users may not behave this way; they
can choose their styles of manipulation for the data. Therefore,
where and how a piece of datawill be falsified is incomprehensible
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in reality. In this section, we change the assumption to ‘‘input data
can bemanipulated in anywhere with anymanner’’. The A-test has
limitations since it only scans the initial part of the input file and
allows the rest to stay out of the law.

9.2. Design of sentinel-based verification

There are a few requirements that a sentinel should satisfy: (1) a
sentinel can be processed by regular Map/Reduce functions (i.e., it
is essentially a key–value pair that is valid to Map/Reduce). (2) A
sentinel should own a unique key that will notmixwith other keys
because a key’s uniqueness facilitates the tracing and verification.
Otherwise all duplicated keys will be reduced to one key through
the reduce function. (3) A sentinel can be inserted into any place of
the input file and removed after the process without much effort.
(4) A sentinel cannot break the original content of an input file to
prevent it from introducing new errors. For example, if a sentinel
is inserted within a word in a text input file, then the word will be
split. A word ‘‘good’’ may become ‘‘go /sentinel/ od’’, which will
be treated as three distinct words by the Map/Reduce function.
(5) A working machine has no idea where and how a sentinel is
embedded.

Fig. 11 describes the sentinel-based verification scheme. Two
new functions are defined: S_Insert (i.e., sentinel insert) and
S_Verify (i.e., sentinel verification). The S_Insert and S_Verify
functions are implemented as wrappers to the data set. They do
not affect any other processes during Map/Reduce. The data set
has already been embedded with sentinels before Map/Reduce.
Therefore, requirement 5 can be satisfied.

9.2.1. S_Insert function
A parameter called insert frequency (F ) is defined to determine

how often a sentinel should be inserted. ‘‘F = 100’’ means one
sentinelwill be inserted for every 100 keys. The sentinel generation
process can satisfy requirements 1 and 2. The way a sentinel is
inserted is key-based, and this means that we can make sure
no keys will be broken during insertion (i.e., requirement 4 is
satisfied). S_insert is described in Algorithm 4.

Algorithm 4. S_insert
S_Insert(int F, Data block):

// F: insert frequency
get reader from block;
int count = 0;
Index start, end;
Key key= null;
Bool insert = true;
Reference ref = new Reference(); // create a reference copy
while ((key= reader.nextKey())!= null)
++count;
if (insert) start = key.index();
if (count % F == 0)

// insert a sentinel among the last F keys
end= key.index();
Sentinel s= getSentinel ();
Ref.add(s);
int pos= (new Random()).nextInt(F);
// insert s to a random position between start and end
insert(block, start, end, pos, s);

During S_insert, every time a sentinel is inserted into the data
set, it is also added into a data structure called the reference copy,
which will be used for verification purposes. When the data set
is being Mapped/Reduced, the sentinels in the reference copy are
processed in the sameway but not in the samemachine where the
data set is processed. Keys differ from application to application.
Even plain textmay choose various encoding standards (e.g., ASCII,
Unicode, etc.). Some applications may limit keys within a small
range (e.g., key space is 8 bit). Therefore, it is not possible to design
a universal method for sentinel generation.

9.2.2. S_Verify function
The purpose of S_Verify is twofold: (1) to verify the correctness

of Map/Reduce task and generate evidence if inconsistency
is reported and (2) to remove sentinels from data set after
verification. The S_Verify primitive is described in Algorithm 5.

Algorithm 5. S_verify
S_Verify(DataSet ds, ReferenceCopy rc):
for Sentinel s in rc

Sentinel tmp= findSentinel(ds, s.getKey());
if (!s.match(tmp))

EvidenceGen(s, tmp, ds);
break;

else // s matches tmp
ds.remove(tmp)

To verify the accuracy of a task, we need to compare the
sentinels in the reference copy and the sentinels embedded in the
output data to check if they canmatch. If they do not match, which
means that the Mapper/Reducer has manipulated the data, then a
piece of evidence will be generated to prove the inconsistency.

9.2.3. Judgments
Pros—the good part is that there is no need to replay the

Map/Reduce function.
Cons—It is not possible to guarantee complete accountability

because this scheme does not check the accuracy of the original
data. Therefore, false positives may exist.

9.2.4. Performance analysis
Since there is one sentinel for every F key–value pairs, the

probability of any key–value pair being a sentinel is 1/F . When a
malicious worker misbehaves, a continuous piece of data is likely
to be manipulated. Let l denote the length of a continuous piece of
data (i.e., the number of key–value pairs is l) that has been falsified.
The chance that there are no sentinels in the data piece is (1−1/F)l.
Therefore, the probability that a corrupted data piece with length
l will be detected is 1 − (1 − 1/F)l. The detection probability is
plotted in Fig. 12.

10. Evaluation

We have implemented a prototype of Accountable MapReduce
based upon Hadoop [7] and have tested it in both our local lab and
the Utah Emulab testbed.

10.1. Experiment setup

We set up a VLAN with 20 PCs in the Emulab testbed to
deploy the AccountableMapReduce.We simulated somemalicious
machines in the system to perform Map/Reduce mess-ups. The
MapReduce application that we are using in our experiments is
wordcount.

10.2. Experiment result

Fig. 13 depicts how theAG size affects the processing timewhen
P-Accountability= 1. Because this experiment’s purpose is to test
how the A-test will impact processing time, we did not insert any
malicious nodes. We built a 5-node cluster to run MapReduce, and
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Fig. 11. Sentinel-based verification.
Fig. 12. Detection probability with sentinel-based verification.

Fig. 13. AG size and processing time when P = 1.

we varied the size of AG to observe how the processing timewould
change. This shows thatwhen there are no auditors (AG# = 0), the
MapReduce system is not accountable, but the processing time is
minimal because there is no extra overhead added by the A-test.
The increase of the AG size will bring extra overhead to the job
(i.e., they conduct the A-test). Since P = 1 in this case, the job will
be entirely duplicated. The more auditors we have, the quicker the
A-test will finish. A straightforward observation is that when the
AG size is equal to the number of workers, each worker will be
tested by an individual auditor so that some waiting time will be
saved. Also the processing time will be minimal.

Fig. 14 shows how P-Accountability affects the processing time.
P = 0 means that the system is not accountable. We also reduce
the P-value from 1 to 0.99 to observe how this change will affect
the processing time.We still use a 5-node cluster to runwordcount
(data size = 50 M). In order to rule out the interference of the re-
submit/re-process time, this experiment is also free of malicious
nodes. The result shows that the lower P-Accountability decreases
significantly the workload of the A-test because fewer records will
be checked. As a result, each mapper/reducer will get tested very
Fig. 14. P-Accountability and processing time.

Fig. 15. Malicious nodes and processing time.

quickly. Also, the AG size will not become an issue since equivalent
performance can be achieved with fewer auditors.

When malicious nodes are taken into account, we need to
add the re-submit/re-process/re-test time into the total processing
time. The cluster still contains 5 workers. The AG size is 2, and the
input data is 100 M. In Fig. 15, we compared the total processing
times when P = 0, 0.99, and 1. In the chart, the gap between curve
(P = 1) and curve (P = 0.99) means that the test time is greatly
reduced. It is also obvious that with the more malicious nodes we
have, the processing time will be longer because once malicious
nodes are detected, they will be exposed and no longer take the
Map/Reduce tasks. As a result, the remaining good workers will
carry out the tasks that need to be reprocessed. The AG must also
re-test the tasks.

False positives may exist when P is less than 1 because the
Map/Reduce task will not be fully tested. However, based upon our
assumption, if the malicious nodes randomly cause errors during
Map/Reduce, then they can be detected with high probability
(determined by P). Another point is that the major performance
improvement has been saved even when P is close to 1 (e.g., P =
0.999). In our experiment (20 repetitions), we found that when
P = 0.99 and when the probability of a bad node altering a record
(denoted by pm) is 0.01, the A-test runs very well without missing
any malicious node. We also tested an extreme case in which P =
0.99 and pm = 0.0001, and this means that the malicious node
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will alter one record out of every 10000 records. In this case, we
did observe false positives.

11. Conclusion

In this paper, we proposed Accountable MapReduce as an
additional component for the current MapReduce model to
support accountability. Accountable MapReduce employs an
Auditor Group (AG) to conduct an A-test on every worker in the
systemwithout being noticed by theworkers. Ifmalicious behavior
occurs, the AG is able to detect it and provide verifiable evidence.
To improve the performance, we introduce P-Accountability in the
A-test to trade the degree of accountability with efficiency. We
formalize the Optimal Worker and Auditor Assignment (OWAA)
problem, which has a target that is to find the optimal numbers
of workers and auditors so that the total processing time can
minimized.We implement a prototype of AccountableMapReduce
in the Hadoop platform. Our evaluation results show that our
scheme can be practically and efficiently utilized in realistic cloud
systems.
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