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Abstract—With the knowledge of the measurement configuration
and the topology structure of a power system, attackers can launch
false data injection attacks (FDIAs) without detection by existing bad
data detection methods in state estimation. The attacks can also
introduce errors to estimated state variables, which are critical to
grid reliability and operation stability. Existing protection methods
cannot handle dynamic and variable network configurations. In this
paper, to effectively defend against FDIAs, we propose a canonical
variate analysis based detection method which monitors the
variation of statistical detection indicators TT 2 andQQ about projected
canonical variables before and after attacks. Unlike most statistic
models that only consider cross-correlation of discretemeasurements
constrained by Kirchhoff’s Law at each independent sampling time,
we also consider the auto-correlation of measurements caused by
time series characteristics of varying loads. Experiment results on
IEEE-14 bus system demonstrate the effectiveness and accuracy of
our proposedmethod based on both synthetically generated data and
real-world electricity data from the New York independent system
operator.

Index Terms—Adversarial attack and defense, artificial
intelligence security, attack detection, canonical variate analysis,
cyber security, false data injection attack (FDIA), smart grid,
state estimation.

I. INTRODUCTION

THE ever increasing demand for reliable, sustainable, and

economical electricity services necessitate near real-time

monitoring and control in power system operations [1], [2]. Tradi-

tionally, key infrastructures such as power systems have been

built on local area networks (LANs) and are not connected to the

Internet. But in recent years, power systems are gradually

exposed to the Internet, facing increasingly severe threats and

challenges to cyber security, such as network attacks, viruses, and

so on. The security protection of power systems is mainly to pre-

vent unauthorized or accidental access, tampering, and destruc-

tion of industrial systems [3], [4].

Measurements that a control center received are obtained from

Remote Terminal Units (RTUs), and go over a wide-area network

in a supervisory control and data acquisition (SCADA) system.

The commonly used protocols in power systems include Distrib-

uted Network Protocol (DNP) 3, Modbus, Profibus, etc. The pro-

tocols themselves are in clear text. Meanwhile, most devices such

as RTUs are still embedded devices, and therefore they do not

possess enough computational power to perform encryption and

authentication [5], [6]. As a result, the integrity and availability of

transmitted measurements are vulnerable to malicious attackers

in power systems. The collapse of power grids occurs from time

to time due to cyber attacks. For example, in June 2010, Iran’s

nuclear power plant was attacked by Stuxnet virus [7]. On Dec.

23, 2015, Ukraine was attacked by BlackEnergy, resulting in

massive power outages in hundreds of thousands of house-

holds [8]. This is the first case of a direct power supply interrup-

tion caused by a cyber attack [8]. Recently in the afternoon of

March 7, 2019, power blackouts inmost parts of Venezuela lasted

for more than 24 hours, resulting in the paralysis of major trans-

portation systems and the failure of infrastructure [9].

False data injection attacks are targeted to the integrity and

availability of received measurements and have attracted

numerous attack and defense studies when they are firstly pro-

posed in 2009 [10]. By systematically tampering with some

meter measurements, the main characteristic of FDIAs is that

they are able to circumvent traditional detection methods

which are based on measurement residual testing [11]. The

real-time operation states of power systems are obtained from
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the accurate state estimation, which is also the basis for bad data

detections. The main function of bad data detection aims at

maintaining stability and security of power systems. Generally,

bad measurements in power grids can be caused by topology

errors or untended measurement abnormalities due to meter fail-

ures or malicious attacks [12]. However, by systematically tam-

pering with some meter measurements, attackers in FDIAs are

able to circumvent traditional detection methods which are

based on measurement residual testing. Meanwhile, FDIAs can

lead the state estimator to produce manipulated estimation

results. It has been proved in [10] that if the number of compro-

mised measurements k satisfies the condition k > m� nþ 1,
it is guaranteed that there exists a false data injection attack

unobservable by the residual based bad data detection, wherem
represents the number of measurements and n is the number of

state variables in the power system. The attack vectors of FDIAs

are not simply random perturbations of meter measurements,

but are rather carefully crafted with the information of Jacobian

matrix H, which is related to the topological structure and line

parameters information of power system. Several methods of

constructing successful FDIAs can be found in [10], [13], [14].

Recently, a class of sparse undetectable attacks is also designed

to worsen the state estimation performance even in the presence

of sensor failures [38].

Existing FDIA mitigation studies can be broadly classified

into two major types: protection based defense and detection

based defense. The protection based defend methods are aimed

at protecting power grids from attackers in advance by offline

ways, while the detection based defend methods are aimed at

detecting and identifying FDIAs during the state estimation

process. The protection based defense mainly focuses on

increasing the measurement redundancy, improving the accu-

racy, and bad data detection ability of state estimation. Adopted

measures are either by performing additional encryption algo-

rithms, or by adding isolation devices in power systems. How

to find the minimum set of measurements that need to be pro-

tected effectively for the purpose of minimizing protection cost

is analyzed in [15]. Meanwhile, advanced measurement equip-

ments such as phasor measurement units (PMUs) which can

directly obtain estimated state variables are used to defend

FDIAs in [16], [17]. The main idea of deploying these

advanced PMUs is to guarantee the observability of power sys-

tems such that attacks can be observed when they are launched.

However, when the topology of a power system is changed, the

deployment results need to be reconsidered because the observ-

ability is also changed. Therefore, these PMUs deployment

protection mechanisms are usually insufficient for variable sys-

tem structures and configurations. Even though these protec-

tion based methods are effective and necessary, it is not enough

to completely protect power grids against attacks.

Detection based defend methods identify FDIAs by devel-

oping anomaly detection mechanisms based on analyzing

measurements before and after attacks. Traditional used bad

data detection methods include the JðxÞ detector and the

largest normalized residual based (LNR) detector. Both of

them can effectively detect bad data caused by random

noise. A Bayesian framework, which can capture the prior

information about states of the power system, is proposed

in [18] for bad data detection. In [19], FDIAs are detected by

monitoring the measurement variance and state changes of

two sequential data collection slots. Further, the state change

vector is estimated and compared with a predefined thresh-

old. A short-term state forecasting-aided based detection

method is proposed in [20] to detect FDIA. This method is

based on the fact that predicted measurements are regarded

as expected measurements. The authors in [21] present a

cosine similarity matching approach to detect FDIAs by com-

paring estimated results of a Kalman filter and measurements

from PMUs. A Robust Principle Component Analysis

(RPCA) method is proposed in [12] for FDIA identification

based on low rank and sparse decomposition for the attacked

measurement matrix. In order to achieve a better balance

between computation efficiency and FDIA detection accu-

racy in the matrix separation problem of RPCA, a fast go-

decomposition approach is proposed in [39]. Also, a realtime

detection method in [5] leverages gathered information from

load forecasts, generation schedules, and real-time measure-

ments from PMUs, which are independent with SCADA

measurements to detect anomalies. Several data driven meth-

ods such as support vector machine (SVM) [22], [23],

improved extreme learning machine (ELM) [24], deep learn-

ing-based method [25], and statistical unsupervised

method [26] are presented. They all based on the fact that

normal measurements and attacked measurements can be sta-

tistically distinguished for the reason that normal measure-

ments are governed by physical laws, such as Kirchhoff’s

law, whereas these attacked measurements are not. Particu-

larly, a real-time principle component analysis (PCA) based

detection method is recently proposed in [37] based on

extracted information about correlations of collected meas-

urements. The PCA based method can provide accurate and

sensitive response towards FDIAs. However, these proposed

methods only consider the cross-correlation of discrete meas-

urements constrained by Kirchhoff’s Law at each indepen-

dent sampling time, the auto-correlation of measurements for

a period of sampling time is ignored. But the auto-correlation

of measurements does exist, because the weather condition

and loads in smart grids are changing with the normal opera-

tion of the system.

This paper investigates an alternative method to FDIA detec-

tion using data-based approach. From the perspective of multi-

variate statistical process monitoring (MSPM), a canonical

variate analysis based detectionmethodwhichmonitors the vari-

ation of statistical indicators about canonical variables is pro-

posed. Unlike most existing statistical models that only consider

cross-correlation (i.e., across smart meters) of discrete measure-

ments constrained by Kirchhoff’s Law at each independent sam-

pling time, the auto-correlation of measurements is also taken

into account in our proposed method. The auto-correlation of

measurements among consecutive time slots is based on the

obvious time series characteristics of changing load and weather

condition. Based on real-time received measurements, canonical

state variables can be directly obtained by projection matrixes

learned from normal historical measurements. Large deviations
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between the real-time statistical detection indicators and thresh-

olds are treated as indications of attacked measurements. Then

an alarm is raised in the control center to alert FDIAs.

The contributions of our paper are presented as follows. We

propose a canonical variate analysis based detection method for

the first time to rapidly identify FDIAs, which are undetected

by traditional residual based detection methods. Our proposed

method considers both cross-correlation and auto-correlation of

received meter measurements among consecutive time slots. To

verify the performance of the proposed detection method, both

synthetically generated data and real-world electricity data are

used and evaluated. The synthetically generated data is obtained

with loads of uniform variation while the real-world electricity

data is obtained with non-stationary loads from the New York

independent system operator (NYISO) [27]. The proposed

detection method can be integrated as an additional function of

bad data detection in the control center.

The rest of the paper is organized as follows. The state esti-

mation and FDIAs models are presented in Section II. The

canonical variate analysis based detection method is proposed

in Section III. The experimental results and performance eval-

uations are given in Section IV. Finally, Section V concludes

the paper and discusses future works.

II. STATE ESTIMATION AND ATTACK MODEL

Power systems exhibit nonlinear characteristics in real-

world utilities and usually the required state variables are

obtained by performing alternating current (AC) state estima-

tion. It has been verified that it is feasible to launch FDIAs in

the AC non-linear state estimation process although the condi-

tion of constructing FDIA in AC state estimation is more com-

plicated compared with the case of DC situation. However,

due to the reason that DC state estimation model is particu-

larly simple for analyzing, we here adopt the commonly used

state estimation model as many papers.

State variables such as voltage phase angles of all buses in a

power system are very important for making real-time decisions

to subsequent operations, such as automatic generation control

(AGC) and optimal power flow analysis (OPF). Although

advanced measurement equipment such as phasor measurement

units (PMUs) can directly measure these phase angles, these

measurement equipment is very expensive in practice and it is

not feasible to deploy enough PMUs to measure and secure all

state variables. In power system state estimation, the unknown

state vector x is obtained through redundant known measure-

ment vector z and the topology structure information of power

system. A common DC approximation model is usually used in

practice to simplify the analysis. It is based on the assumptions

as follows: (1) amplitudes of all bus voltages are close to unity,

(2) line resistances are negligible, and (3) angle differences

between any two buses are sufficiently small. The approximation

model is written as follows:

zz ¼ HxHxþ ee; (1)

where xx ¼ ½x1; x2; � � �xn�T is the state vector which includes

voltage phase angles of all n buses in a power grid. ee ¼

½e1; e2; � � � em�T is the m-dimensional measurement error vec-

tor which is commonly assumed to be a zero mean Gaussian

random variable with a known covariance RR. HH is a m� n
Jacobian matrix which is related to the power grid topology.

zz ¼ ½z1; z2; � � � zm�T is the measurement vector which is

obtained from m smart meters. This measurement vector

includes active power injection measurements Pi of n buses

and m� n active power flow measurements Pij of branches

in a power grid, where i 2 ½1; n�, j 2 ½1; n�, n < m. The

active power injection measurements Pi are defined as the dif-

ferences of the active power generations and the active power

demands at each bus in the power grid, while the active power

flow measurement Pij for a transmission branch is the active

power between two adjacent buses i and j.
In a power system, the state vector xx is usually obtained by

performing a state estimation procedure using received redun-

dant measurements and the topology information of the sys-

tem. The weighted least squares estimation, which minimizes

the cost function of ½zz�HxHx�TRR�1½zz�HxHx�, is widely used to

obtain the estimated state vector x̂̂x. By using weighted least

squares estimation, the result of estimated state vector x̂̂x is

shown in Equation (2). The operation symbol argminxxðfðxxÞÞ
simply returns the value of variable xx which minimizes the

cost function fðxxÞ over the set of candidates for xx.

x̂̂x ¼ argmin
xx

½zz�HxHx�TRR�1½zz�HxHx�
¼ ðHHTRR�1HHÞ�1HHTRR�1zz:

(2)

Based on the estimated state vector x̂̂x and the Equation (1),

the estimated measurement vector ẑ̂z is calculated as follows.

ẑ̂z ¼ HHx̂̂x ¼ HHðHHTRR�1HHÞ�1HHTRR�1zz: (3)

Let KK ¼ HHðHHTRR�1HHÞ�1HHTRR�1, we can obtain that

ẑ̂z ¼ KzKz. Furthermore, the matrix KK has the properties that

KK �KK �KK � � �KK ¼ KK and KK �HH ¼ HH [28]. Therefore, the

measurement residual rr can be represented as follows:

rr ¼ zz� ẑ̂z ¼ ðII �KKÞðHxHxþ eeÞ
¼ ðII �KKÞee ¼ SeSe:

(4)

Then, we can obtain that SS ¼ rr=ee. SS is called the residual sen-

sitivity matrix, which represents the ratio of the measurement

residual rr to the measurement error ee. II is the identity matrix

with dimensions ofm�m.

As for bad data, the commonly used detection and identifica-

tion methods are the JðxxÞ detector and the largest normalized

residual (LNR) detector, which are obtained by processing the

measurement residual rr. The detection indicator of the JðxxÞ
detector is defined in Equation (5).

JðxxÞ ¼ rrTRR�1rr: (5)

The objective function JðxxÞ approximately follows the x2 dis-

tribution with m� n degrees of freedom [28]. The bad data is

detected when the detection indicator exceeds the threshold t

for a given detection confidence with probability p, where
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p ¼ PrðJðxxÞ � x2
ðm�nÞ;pÞ. We use DJðxxÞðzzÞ to represent the

JðxxÞ detector shown in Equation (6). The value 1 of DJðxxÞðzzÞ
indicates that FDIAs are launched, while the value 0 indicates

that there is no attack.

DJðxxÞðzzÞ ¼ 1; if JðxxÞ � t;
0; otherwise;

�
(6)

where t ¼ x2
ðm�nÞ;p.

The detection indicator of the LNR detector is defined in

Equation (7). The rr�i represents the normalized value of the

measurement residual for measurement i.

rr�i ¼
rrij jffiffiffiffiffiffiffi
VVii

p ; (7)

The rri is the i-th residual in measurement residual rr. VV is

the covariance of the measurement residual rr and it can be cal-
culated as VV ¼ E½r � rr � rT � ¼ SSE½e � ee � eT �SST ¼ RSRS with dimen-

sions of m�m. The symbol E½�� is the operation of

expectation. VVii is the i-th diagonal entry in the measurement

residual covariance matrix VV corresponding to rri. When the

largest element of rr�i exceeds the predefined threshold z, it

implies that the i-th measurement zzi in the measurement vec-

tor zz has been attacked by attackers. The detection result of

the LNR detector can be expressed in Equation (8).

DLNRðzzÞ ¼ 1; if max rr�i � z; i 2 ½1;m�
0; otherwise:

�
(8)

where the value 1 of the DLNRðzzÞ also indicates that FDIAs

are launched, while the value 0 indicates that there is no

attack.

The main feature of FDIAs is that attack vectors constructed

by attackers are able to circumvent traditional bad data detec-

tion methods and can impose significant bias to estimated state

variables. In the process of state estimation in the power sys-

tem, FDIAs can be launched by eavesdropping and interfering

communication links between smart meters and the control

center, directly compromising some specific smart sensors, or

hacking the control center and the database. It has been proved

in [10] that the attack vector aa ¼ ½aa1; aa2; � � � aam�T is called

FDIAs if and only if the attack vector aa can be represented as

the linear combination of columns in the Jacobian matrix HH.

In other words,

aa ¼ HcHc; (9)

where cc is the injected deviation of the state vector xx. There-
fore, the received attacked measurement vector zaza in the con-

trol center with an attack vector aa can be expressed as follows:

zaza ¼ zzþ aa ¼ HHðxxþ ccÞ þ ee ¼ HxaHxa þ ee; (10)

where xaxa is the estimated state vector after attacks and it cor-

responds to the attacked measurement vector zaza. The measure-

ment residual rara under FDIAs is presented as shown in

Equation (11).

rarak k2 ¼ zaza �HxaHxak k2¼ zzþ aa�HHðxxþ ccÞk k2
¼ zz�HxHxk k2:

(11)

where the symbol k � k2 represents the operation of l2 norm.

Equation (11) shows that the attack vector aa does not change the
measurement residual rr such that it can remain undetected by

existing bad data detection methods in the state estimation. But

the attack vector stealthy alters these estimated state variables.

III. PROPOSED DETECTION METHODOLOGY

It is well-known that state variables such as bus phase angles

reflect the process operation statuses of power systems. Usu-

ally, it is quite difficult to directly measure voltage phase angles

by smart meters. However, the canonical variate analysis

(CVA) can obtain changes of state variables directly from the

received redundant measurement vector of consecutive time

slots. In other words, CVA can determine canonical variables

with the greatest correlation by the measurement data of past

and future [29]. Since estimated state variables after FDIAs are

injected with deviations, directly monitoring the change of state

variables can effectively detect FDIAs by the CVA. Mean-

while, the CVA is a data-based multivariate statistical process

monitoring (MSPM) tool based on state-space model, which is

suitable for dynamic process monitoring [30]–[32]. It considers

not only the cross-correlation of measurements constrained by

Kirchhoff’s Law, but also the auto-correlation of measure-

ments with time evolution. The auto-correlation of measure-

ments is based on the fact that loads in power systems vary

with the weather and temperature.

Our proposed CVA based detection method includes two

stages. The first stage is a historical measurement-based train-

ing process. The second stage is a real-time detection process

for FDIAs. The basic idea of the proposed method is shown in

Fig. 1. The outline of the method is listed as follows.

	 During the training stage, the main aim is to identify the

maximum correlation between the past and future meas-

urements and obtain parameters which are used for the

real-time detection stage. There are five main steps that

need to be processed as follows.

	 Step 1: Collected N consecutive measurement vec-

tors are firstly normalized and the past and future

Hankel matrixes are obtained.

	 Step 2: A scaled Hankel matrix is constructed.

	 Step 3: Singular value decomposition is performed

and projection matrixes are obtained.

	 Step 4: Canonical state variables and detection sta-

tistics are computed.

	 Step 5: Based on these detection statistics, detection

thresholds are determined for a given significance

level.

	 During detection stage, there are four steps to identify

FDIAs in real-time.

	 Step 1: Real-time measurements are normalized by

using means and variances and the past observation

vector is constructed. The means and variances are

obtained of the training stage.
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	 Step 2: Normalized real-time measurements are

projected based on the projection matrixes to obtain

state variables and residual variables.

	 Step 3: Detection statistics TT 2 and QQ are calculated.

	 Step 4: With the obtained detection thresholds in the

training stage, alarms are triggered when FDIAs

occur.

The specific process of each module in the flowchart is

described and discussed in the subsequent subsections.

A. Training Stage, Step 1: Normalizing Measurements

and Constructing Past and Future Hankel Matrixes

Assume that there are consecutive N collected measure-

ment vectors under normal operating conditions for CVA

training. We use zzok ¼ ½zk;1; zk;2; � � � zk;m�T to represent the

original m-dimensional measurement vector at time k. All the
measurements of consecutive N time slots can form a original

measurement matrix ZZo, which can be represented as follows:

ZZo ¼

z1;1 z2;1 � � � zk;1 � � � zN;1

z1;2 z2;2 � � � zk;2 � � � zN;2

..

. ..
. . .

. ..
. . .

. ..
.

z1;j z2;j
. .
.

zk;j
. .
.

zN;j

..

. ..
. . .

. ..
. . .

. ..
.

z1;m z2;m � � � zk;m � � � zN;m

2
6666666664

3
7777777775
; (12)

where k 2 f1; 2; . . .; Ng and j 2 f1; 2; . . .;mg. For simplicity,

the matrix ZZo is represented as a vector group consisting of N

column vectors, i.e., ZZo ¼ ½zzo1; zzo2; � � � zzok; � � � zzoN �, where k 2
f1; 2; . . .; Ng. To avoid the disturbance of measurements with

larger absolute values, each variable in historical normal mea-

surement vectors is normalized to zero mean and unit vari-

ance. Based on these N normal measurement vectors, the

mean value �zj of the j-th variable in each measurement vector

zzok and its corresponding variance s
2
j are obtained as follows:

�zj ¼ 1

N

XN
k¼1

zk;j; s2
j ¼

1

N � 1

XN
k¼1

ðzk;j � �zjÞ2;

where j 2 f1; 2; . . .;mg. Then, the measurement vector at

time k is normalized as zzk ¼ ½zk;1��z1

s2
1

;
zk;2��z2

s2
2

; � � � zk;m��zm

s2m
�T .

Finally, the original measurement matrix ZZo are represented

as a new matrix ZZ ¼ ½zz1; zz2; � � � zzN�.
At each time slot k, the measurement vector zzk is expanded

by adding p past measurement vectors and f future measure-

ment vectors in order to take into account time correlations.

The generated augmented past observation vector zzp;k and the

future observation vector zzf;k are represented as follows:

zzp;k ¼ ½zzTk�1; zz
T
k�2; � � � zzTk�p�T ; (13Þ

zzf;k ¼ ½zzTk ; zzTkþ1; � � � zzTkþf�1�T : (14Þ
Note that the past observation vectors are formed into a

ðmpÞ � 1 vector (zzp;k) while the future observation vectors are
formed into a ðmfÞ � 1 vector (zzf;k). The above process of

constructing the past and future observation vectors at each

time slot k is shown in Fig. 2. The consecutive past p normal

Fig. 1. The flowchart of the proposed CVA based detecting method against FDIAs.
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measurements before time slot k forms the past observation

vector zzp;k and the consecutive past f normal measurements

after time slot k forms the future observation vector zzf;k.
Since there are N known historical measurement vectors

which are used to perform the training, the value range of time

k is k 2 f1; 2; . . .; Ng. However, based on the constructed

past observation vector zzp;k in Equation (13), the last element

is zzTk�p in which the smallest subscript k� p > 0. Therefore,
the time k needs to satisfy k > p, k 2 N�. The symbol N� rep-
resents the set of positive integers. Also, due to the last ele-

ment in the constructed future observation vector zzf;k in

Equation (14) is zzTkþf�1, the biggest subscript kþ f � 1 needs

to satisfy the condition kþ f � 1 � N , k 2 N�. As a result,

the value range of time k is p < k � N � f þ 1, k 2 N�.
Based on the description above, these future measurement

vectors zzf;k at each time k are also known in the training pro-

cess. During the process of the training, meter measurements

in a moving window of width pþ f are used at each time to

construct past and future observation vectors, which are zzp;k
and zzf;k. In the constructed past and future observation vec-

tors, the values of p and f are determined by autocorrelation

analysis of the z0k ¼
Pm

j¼1 z
2
k;j, which is the square sum of

each measurement at each time slot k. The autocorrelation

function is calculated as follows:

r̂ðiÞ ¼
PN�i

k¼1

Pm
j¼1 z

2
k;j

Pm
j¼1 z

2
kþi;j

� �
PN

k¼1

Pm
j¼1 z

2
k;j

� �2 (15)

where parameter i is the time lag for observed measurement

vectors and i 2 f0; 1; 2; . . .; N � 1g. Based on the Equa-

tion (15), we can obtain these measurement-based autocorrela-

tion function values about the number of time lags. The values

of p and f are determined by the following equation:

p ¼ f ¼ max ijr̂ðiÞ � df g; (16)

where the parameter d is a given confidence bound.

The past and future Hankel matrixes ZZp and ZZf are formed

by arranging the whole N observed measurement vectors in

columns. The specific forms of the two matrixes are shown in

Equation (17) and Equation (18).

ZZp ¼ ½zzp;pþ1; zzp;pþ2; � � � zzp;pþM �; (17Þ
ZZf ¼ ½zzf;pþ1; zzf;pþ2; � � � zzf;pþM �; (18Þ

whereM is the number of columns ofHankelmatrixes and it sat-

isfiesM ¼ N � p� f þ 1. In Equation (13) and Equation (14),
since the range about subscript k in the past observation vector

zzp;k is p < k � N � f þ 1, k 2 N�, the first element of the past

Hankel matrixes ZZp is zzp;pþ1. Similarly, the first element of the

future Hankel matrixes ZZf is zzf;pþ1. The dimensions of the past

Hankel matrix ZZp are ðmpÞ �M and the dimensions of the

future Hankel matrix ZZf are ðmfÞ �M. The above description

is the first step of the historical measurements based training in

Fig. 1. For the following real-time detection stage, the con-

structed past vector zzp;k is also obtained in the same way as pre-

sented above.

B. Training Stage, Step 2: Constructing Scaled Hankel

Matrix FF

Based on the past and future Hankel matrixes ZZp and ZZf , the

sample measurement-based covariance and cross-covariance

matrixesSSff ,SSpp andSSfp are defined as follows:

SSff ¼ 1

M � 1
ZZfZZ

T
f ;

SSpp ¼ 1

M � 1
ZZpZZ

T
p ;

SSfp ¼ 1

M � 1
ZZfZZ

T
p :

The SSff and SSpp represent the autocorrelation of the past and

future Hankel matrixes ZZp and ZZf with time lags separately,

whileSSfp represents the cross-correlation between theZZp andZZf .

The process of constructing scaledHankelmatrix corresponds

to the second step of the historical measurements based training

in Fig. 1. The scaled Hankel matrixFF is defined as follows:

FF ¼ SS
�1=2
ff SSfpSS

�1=2
pp ; (19)

where the dimensions of FF are ðmfÞ � ðmpÞ, the negative

power operation of a matrix means the inverse matrix after the

power operation of the original matrix, and any matrix BB satis-

fying BB2 ¼ AA is known as the square root matrix of AA,

denoted as AA1=2 [34]. The purpose of the canonical variate

analysis is to find the linear combinations that maximize the

correlation between the past and future Hankel matrixes. As

proved in [30], it can be realized by performing singular value

decomposition (SVD) of the obtained scaled Hankel matrix FF
and the correlation is the corresponding singular value of FF.

C. Training Stage, Step 3: Singular Value Decomposition and

Projection Matrixes

Let r denote the rank of the scaled Hankel matrix FF, i.e.,

rankðFFÞ ¼ r. Based on the Theorem 5.1 (SVD) in [34], by

performing SVD of FF, the following equation can be

obtained:

FF ¼ UDVUDV T ; (20)

Fig. 2. The process of constructing the past and future observation vectors at
each time slot k.
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where UU and VV are the left and right singular column vectors,

which can be represented as UU ¼ ½uu1; uu2; . . . ; uuðmfÞ� and

VV ¼ ½vv1; vv2; . . . ; vvðmpÞ�, respectively. Each uui in UU represents a

column vector with the dimension of ðmfÞ, i 2 ½1; 2; . . . ;mf �.
Similarly, each vvj in VV represents a column vector with the

dimension of ðmpÞ, j 2 ½1; 2; . . . ;mp�.DD is the obtained diag-

onal matrix in which each of its elements represents the corre-

lation between the corresponding column vectors of UU and VV .

The diagnal matrixDD can be represented as:

DD ¼ diagð�1; �2; . . . ; �rÞ 00r�ðmp�rÞ
00ðmf�rÞ�r 00ðmf�rÞ�ðmp�rÞ

� �
;

where �1; �2; . . . ; �r are the singular values and they satisfy

1 � �1 � �2 � � � � � �r > 0. The symbol 00 represents zero

matrix, in which all the elements are zeros.

The number of nonzero singular values is r. In order to real-
ize the dimension reduction, only the first s singular values

are used. These s singular values are called dominant singular

values [35]. The value of s is determined by the following

equation:

s ¼ max ij�i � ’; 0 < ’ < �1; i 2 f1; 2; � � � rgf g; (21)

where ’ is a given threshold.

By utilizing the VV s ¼ ½vv1; vv2; . . . ; vvs�, projection matrixes JJ
and LL to achieve matrix transformation are obtained as fol-

lows.

JJ ¼ VV T
s SS

�1=2
pp ; (22Þ

LL ¼ ðII � VV sVV
T
s ÞSS�1=2

pp : (23Þ

The dimensions of projection matrix JJ are s� ðmpÞ and

the dimensions of projection matrix LL are ðmpÞ � ðmpÞ. The
above content is the third step of the historical measurements

based training in Fig. 1. These two projection matrixes JJ and

LL are then retained and used during the detection stage.

Since generating the projection matrixes in the training pro-

cess is off-line, the computation complexity of those cross

covariance matrixes and the SVD is not an issue. During the

online detection process, the projection matrixes are directly

used to compute the canonical state variables by using the

received measurements.

D. Training Stage, Step 4: Computing Canonical State

Variables and Detection Indicators

Canonical variables can be estimated from the past mea-

surement vector zzp;k. A canonical state variable xx corresponds

to these voltage phase angles in the power grid. A residual var-

iable ww stands for the small noise during the projection pro-

cess. The canonical state variable xx and the residual variable

ww at time slot k are calculated as follows:

xxk ¼ JJzzp;k; (24Þ
wwk ¼ LzLzp;k: (25Þ

The dimensions of xxk are s� 1. Therefore, through the trans-

formation of projection matrix JJ , the mp-dimensional past

measurement vector zzp;k can be reduced to the s-dimensional

xxk, which has realized the dimension reduction. Similarly, the

dimensions of wwk are ðmpÞ � 1. At each time slot, all elements

in the canonical state variable xx forms a state subspace and all

elements in the residual variable ww forms a residual subspace.

Finally, the Hotelling TT 2 statistic and the QQ statistic are

both used as attack detection indicators to monitor variations

of state variables and residual variables at each time slot. The

Hotelling TT 2 statistic is usually constructed to test whether the

mean value of a random variable is equal to the expected

value. The detection indicator QQ is used to monitor the varia-

tions of the sum of square errors in the residual subspace,

which is the complement of state space at each time slot. QQ
statistic can capture unobservable variable changes in the TT 2

statistic and they are complementary.

Usually, for the canonical state variable xx ofM samples with

normal distribution, the TT 2 statistic is calculated as follows:

TT 2
k ¼ ðxxk � �x�xÞTCCðxxk � �x�xÞ; (26)

where the symbol �x�x is the expected value of the canonical

state variable xx and �x�x ¼ 1
M

PM
k¼1 xxk. CC is the covariance of

canonical state variable xx. It can be deduced that the following
equation holds:

CC ¼ 1

M � 1

XM
k¼1

xxkxx
T
k

¼ 1

M � 1

XM
k¼1

VV T
s SS

�1=2
pp zzp;kzz

T
p;kSS

�1=2
pp VV s

¼ VV T
s SS

�1=2
pp

XM
k¼1

1

M � 1
zzp;kzz

T
p;k

 !
SS
�1=2
pp VV s

¼ VV T
s SS

�1=2
pp SSppSS

�1=2
pp VV s ¼ VV T

s VV s ¼ II:

(27)

Equation (27) means that the covariance of xx is an identity

matrix. At the same time, since the generated past and future

observation vectors are normalized, the expected value �x�x of is

zero. Therefore, the TT 2
k detection indicator is simplified as fol-

lows:

TT 2
k ¼ xxT

k xxk: (28)

To monitor the variations of the sum of square errors in the

residual subspace, which is the complement of state space at

each time slot, the detection indicator QQ is defined as follows:

QQk ¼ wwT
k wwk: (29)

Once the detection indicators of state variables are obtained

from received real-time measurement vector, they are com-

pared with detection thresholds to detect if false data injection

attacks occur during the online detection stage. The above pro-

cess described the fourth step of the historical measurements

based training in Fig. 1.
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E. Training Stage, Step 5: Determining Detection Thresholds

As for detection thresholds in the training stage, we assume

that the process noise and measurement noise in the power

grid follow Gaussian distributions. Therefore, the state varia-

bles and measurements are also Gaussian distributions. The

detection thresholds are determined by the given confidence

level of the Gaussian distribution. For a given significance

level a, the detection thresholds for TT 2 statistic and QQ statistic

are represented as TT 2
a and QQa such that P ðTT 2 < TT 2

aÞ ¼ a and

P ðQQ < QQaÞ ¼ a. Based on the Theorem 2.16 in [36], the

detection thresholds TT 2
a and QQa are defined as follows:

TT 2
a ¼ sðM � 1ÞðM þ 1Þ

MðM � sÞ Faðs;M � sÞ; (30Þ

QQa ¼ g1

cað2g2h
2
0Þ1=2

g1
þ 1þ g2h0ðh0 � 1Þ

g2
1

" #1=h0
; (31Þ

where Faðs;M � sÞ is the upper percentile of F-distribution

with s andM � s degrees of freedom given a significance level.

The F-distribution is a probability density function, which is

defined as a ratio of the variances about two normally distributed

random variables. For more details about the F-distribution,

please refer to [36]. ca is the normal deviate corresponding to the

upper 1� a percentile. gi ¼
Pr

j¼sþ1 s
2i
j for i ¼ 1; 2; 3 and g is

the function of the eigenvalue about the covariance of past mea-

surement vector. h0 ¼ 1� 2g1g3=ð3g2
2Þ. The sj is the j-th

eigenvalue about the covariance of past measurement vector.

The above description is the fifth step of the historical measure-

ments based training in Fig. 1. These obtained detection thresh-

olds are then retained.

F. Detection Stage: Real-Time FDIAs Detection

Step 1: Each element in the received real-time measurement

vector zz{k ¼ ½zk;1; zk;2; � � � zk;m�T is firstly normalized by the

retained means �zj and variances s2
j , which are in the first step

of the training stage and j 2 f1; 2; . . .;mg. After that, the past
observation vector is construct in the same manner of

Equation (13).

Step 2: The two retained projection matrixes JJ and LL are

directly used to compute the canonical state variables xxk and

the residual variables wwk. This process is the same with Equa-

tions (24) and (25).

Step 3: The constructed detection indicators TT 2 and QQ are

also obtained in the same way as presented in Equations (28)

and (29). The detection thresholds retained in the training

stage are directly used in the real-time detection stage.

Step 4: If the detection indicator TT 2
k is larger than the detec-

tion threshold TT 2
a or the detection indicator QQk is larger than

the detection threshold QQa at time slot k, the FDIAs to the

measurement vector zz{k are detected.

IV. PERFORMANCE EVALUATION

To verify the performance of our proposed method, we

evaluate it using both synthetically generated data and

real-world electricity data. We first show that traditional

measurement residual-based J(x) detector and LNR detec-

tor cannot detect FDIAs when the estimated state variables

are injected with bias. Then, the effectiveness and accu-

racy of the proposed CVA-based method are illustrated

and presented.

A. Simulation Setup

The test system for validating the performance of proposed

detection method is based on the IEEE 14-bus system. There

are 14 buses and 20 branches with a total load demand of

259MW. We consider the full measurement system, in which

these SCADA measurements include 14 bus injected active

power measurements, 20 active power flow measurements of

branches at the from-end and, 20 active power flow measure-

ments of branches at the to-end. The from-end and to-end of a

power transmission branch mean the power flow sending and

receiving ends, respectively. Therefore, there are 54 SCADA

measurements at one specific time slot. For simulating the

continuous system operation process of the power system,

load demands at every load bus may dynamically change and

generation in the system also varies in order to keep the bal-

ance of power.

In this paper, to verify the detection performance of our pro-

posed CVA-based method, we consider two different cases,

which are based on the synthetically generated load data in

Case 1 and the real-world electricity load data in Case 2,

respectively. In Case 1, in order to generate the synthetically

generated data, loads on each bus are supposed to be uni-

formly distributed between 80% and 120% of its base load for

1000 consecutive time slots. In Case 2, for the purpose of gen-

erating real-world electricity measurement data, loads used

are adopted from the New York independent system operator

(NYISO) [27]. These load data are online load flow profiles

for 11 regions recorded every five minutes. The loads data

used are between January 1, 2016 and January 7, 2016. We

link each load bus of the test system with the normalized load

data of one region of NYISO.

Afterwards, the measurement vectors at each time slot of

both experimental cases are collected and obtained by running

DC power flow analysis procedures from the MATPOWER

Toolbox [33]. At the same time, in order to mimic the effect

of measurement random errors of meters, the Gaussian white

noises are added to the measurement vectors with the signal

noise ratio (SNR) of 20 dB. The redundancy of measurements

under our simulation condition is 3.86, which is computed as

the ratio of the number of measurements to the number of state

variables. For generating the false data injection attacks data,

we adopt the targeted FDIAs [10], in which attackers intend to

inject specific errors into the estimation of certain chosen state

variables. The targeted FDIAs in which only a certain number

of state variables are polluted in one specific region has greater

potential harm to power system. We have simulated 5% incre-

mental FDIAs on system state u2, which is the phase angle of

bus 2. All measurements related to bus 2 are replaced with fal-

sified measurements, which are generated by the means in

Section II. All experiments are conducted in Matlab R2017a
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environment with Lenovo laptop of 2.20 GHz Intel Core i5

processor.

B. Detection Performance

The detection performance of our proposed canonical vari-

ate analysis based method is evaluated by checking whether it

is able to identify FDIAs in obtained datasets. For the first

scenery, the FDIA is launched at time T=750 and it lasts until

time T=1000. For the second scenery, there are 2045 measure-

ment vectors in total, the FDIA is launched at time T=1535,
and it lasts until time T=2045. In both cases, the strength of

FDIAs is simulated of 5 percent increment of its original val-

ues, i.e., the manipulated state variable of u2 is 5% bigger than

its true value. Since the indicator of JðxÞ detector follows x2

distribution and the degrees of freedom is m� n ¼ 40, we
have the significance level a ¼ 0:01 and the threshold of JðxÞ
detector is set as 63.69. The detection threshold of LNR detec-

tor is set as 3.8, which is learnt from historical measurement

statistics.

It can be seen from Fig. 3 in Case 1, the estimated phase

angles of bus 2 closely follows the true values when there is

no attacks. When the FDIA occurs, the estimated state vari-

able u2 deviates directly from its true value and the injected

bias is about 2.87 degrees. However, the FDIA during the

attack period is undetected by commonly used JðxÞ detector
and LNR detector, in which the detection statistics are almost

smaller than thresholds as shown in Fig. 4. This indicates that

the received false measurement vectors are regarded as nor-

mal in control center. Moreover, the estimated incorrect state

variables are used as inputs for subsequent EMS application

modules. Then the control center produces wrong control

commands and decisions.

As for the real-world electricity data of one week generated

by loads from NYISO in Case 2, Figs. 5 and 6 also show the

similar results as in Case 1. When the FDIA is launched at

time T=1535, the estimated state variable u2 deviates suddenly

from its true value, but the detectors do not alarm any abnor-

malities. However, the traditional measurement residual-based

JðxÞ detector and the LNR detector cannot detect FDIAs

when the estimated state variables are injected with bias.

The proposed method is firstly trained based on normal his-

torical measurement vectors to generate the projection

matrixes and detection thresholds. Note that the dynamics of

power grids vary with the changes of loads.

Therefore, the obtained measurement vectors are tempo-

rally correlated during the consecutive observation period. For

simplicity, to consider more realistic load changes in power

grid, we only present the detail analysis procedure of the pro-

posed detection method in Case 2. We use the first 1000 nor-

mal measurement vectors to perform the offline training. At

the beginning, the number of past and future measurement

vectors p and f are determined by analyzing time correlations

of the square sum of all normalized measurement vectors [32].

As shown in Fig. 7, there are total 1000 training data of

Fig. 4. Detection performance of JðxÞ and LNR detectors under FDIA.

Fig. 3. Estimation result of u2 by weighted least square under FDIA. Fig. 5. Estimation result of u2 by weighted least square under FDIA.

Fig. 6. Detection performance of JðxÞ and LNR detectors under FDIA.
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observed measurement vectors. We observe that the sample

autocorrelation decreases rapidly with the number of time lags

and fluctuates up and down near zero. For this case study,

when the time lags are greater than 25, the autocorrelations

fluctuate up and down basically within a confidence bound of


15%. Therefore, for the given confidence bound, the maxi-

mum time lag is set as 25 and then parameters p and f are set

to be 25 for this study. Also, the selection about the number of

time lags can affect the dimensions of constructed covariance

matrixes and scaled Hankel matrix. Consequently, the calcula-

tion speed of the training algorithm and the number of canoni-

cal state variables can also be affected.

Then, the length of the past and future observation vectors

for processing detection is 1350 and the number of columns of

Hankel matrixes is M ¼ 951. According to the proposed

detection method described, the singular value decomposition

is then performed on the scaled Hankel matrix in order to esti-

mate the number of state variables. The most popular method

for calculating the optimal number of state variables is based

on the dominant singular values in the diagonal matrix DD.

Usually, since there are noise in the measurements, the diago-

nal matrix is typically full rank. It can be seen from Fig. 8 in

which the whole non-zero elements of matrixDD are presented.

Clearly, the first 14 dominant singular values have contained

the most characteristics of observed measurements. The

remaining singular values are very small and approximately

equal to zero. In IEEE 14-bus power system, the whole state

variables are phase angles of buses and this means that there

are 14 state variables. Therefore, it is satisfactory that the

reserved number of dominant singular values is set as s ¼ 14.
At the same time, the remaining singular values are the resid-

ual variables in the subspace. The CVA model is then trained

to obtain the projection matrixes and the detection thresholds

for a given significance level.

Fig. 9 shows the detection performance results of our pro-

posed detection method against FDIAs targeted to voltage

phase angle of bus 2. The last 1045 measurement vectors are

used for FDIAs detection. The attacks are launched at T=535.
Before the FDIAs starts, both TT 2 and QQ statistics are fluctu-

ated with time, but they are almost below the detection thresh-

olds. After the FDIAs occur, only after a very short time

delay, the TT 2 and QQ statistic indicators exceed their thresh-

olds. In other words, the FDIAs can be effectively detected.

Also, the missed detection rate, which is defined as the ratio of

the number of undetected samples under attacks to the total

number of attacked samples, is used to describe the detection

accuracy. The missed detection rate of TT 2 statistic is 0:73%
and the missed detection rate of QQ statistic is 1:28%. Since the

generated past and future observation vectors are constructed

by the measurements in a moving window, the correlation of

these measurements is not significantly changed when FDIAs

have just occurred. However, as the window slides backward,

the correlation changes greatly and the detection index obvi-

ously exceeds the threshold. Meanwhile, we can conclude that

the canonical state variables and the residual variables are

both sensitive to FDIAs. It is because the cross-correlations

and auto-correlations of observed measurements are both

affected after attacks, and the influence can be effectively cap-

tured through canonical variate analysis.

The detection performance of Case 1 is shown in Fig. 10.

We use 500 normal historical measurement vectors for the

training, in which the time lags p and f are set as 10. The

Fig. 7. Sample autocorrelation function of the number of time lags for
observed measurement vectors.

Fig. 8. Normalized singular values from the scaled Hankel matrix.

Fig. 9. Detection performance against FDIA towards voltage phase angle of
bus 2 in Case 2.
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number of columns of Hankel matrixes isM ¼ 481. The order
of the system which corresponds to the number of canonical

state variables for the CVA-basd detection method is also set

as 14. The last 500 measurement vectors are used for FDIAs

detection. The attacks are launched at T ¼ 251. It can be seen

that under the steady operation of power system under uni-

formly varying loads, both TT 2 and QQ statistical indicators can

effectively detect the occurrence of FDIAs. There is basically

no detection delay and the missed detection rate is almost

zero. Meanwhile, both TT 2 and QQ statistical indicators are sen-

sitive to the attacks. Usually, due to the reason that if the sys-

tem variations cannot be captured in state variable subspace, it

will be captured by the residual subspace. Therefore, we adopt

both TT 2 and QQ statistical indicators for FDIAs detection.

To compare the performance of the proposed CVA-based

method with the PCA-based detection algorithm in [37], the

detection result of PCA-based detection algorithm using real-

world electricity load data in Case 2 is presented in Fig. 11. In

order to meet the rationality of experimental comparison, voltage

phase angle of bus 2 is attacked by FDIAs and the settings of

launched FDIAs are the same as Case 2. For the PCA-based

detection algorithm, the largestL singular values of the measure-

ment matrix is remained such that ðPL
i¼1 si=

PT
i¼1 siÞ ¼ 90% is

satisfied, where s represents the singular value of measurement

matrix and T is the number of total singular values. Based on the

Fig. 11, we observe that T 2 and Q statistics of the PCA-based

method have more false alarms. Also, although the number of

missing detections of PCA-T 2 is large, the number of missing

detections of PCA-Q is very rare. It shows that the detection per-

formance of PCA-Q statistics is better than the PCA-T 2. We

define the false alarm rate (FAR) and miss detection rate (MDR)

as follows.

FAR ¼ Nhit

Nhit þNmiss
;

MDR ¼ Nfalse

Nfalse þNcorrect
;

where Nhit represents the number of successful detections of

attacks, Nmiss represents the number of miss detections of

attacks, Nfalse represents the number of false alarms, and

Ncorrect represents the number of correct reports of no attack.

To quantify the comparison of experimental results, the per-

formance comparison of three different detection methods

about Case 1 and Case 2 is presented in Table I. It shows that

the residual-based JðxÞ detector and LNR detector can hardly

detect the occurrence of FDIAs. As for the PCA-based detec-

tor, the MDRs for both Case 1 and Case 2 are very low. The

FAR for Case 2 of the PCA-based detector is higher than the

FAR for Case 1, mainly because the fluctuation of real-world

electricity load data is relatively larger than that of uniform

load changes in Case 1. However, compared with results of

the proposed CVA-based detection method, the FARs of

PCA-based detector for both Case 1 and Case 2 are higher.

This is because only the cross-correlation constrained by

Kirchhoff’s Law is considered and the auto-correlation of con-

secutive measurements in the PCA method is neglected.

Therefore, based on the above analysis and comparison,

experiments show that our proposed CVA-based detection

algorithm has better detection performance.

V. CONCLUSION AND FUTURE WORK

Since FDIAs have the capability to successfully bypass con-

ventional residual-based detections and can stealthily cause

erroneous state estimation results in smart grid, the subsequent

control and operations can be severely affected. However,

most existing FDIAs detection methods only consider cross-

correlation of discrete measurement vectors at each current

sampling time, which are constrained by the Kirchhoff’s Law.

The auto-correlation of state variables and measurements for a

consecutive time slots is usually neglected. In this paper, a

canonical variate analysis based new detection method is pro-

posed for detecting FDIAs. The proposed canonical variate

analysis based detection method captures both the cross-corre-

lations and the auto-correlations of observed measurements

Fig. 11. PCA-based method detection performance towards voltage phase
angle of bus 2 in Case 2.

Fig. 10. Detection performance against FDIA towards voltage phase angle of
bus 2 in Case 1.
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through the least number of canonical state variables. Then,

FDIAs are effectively detected by checking the statistical con-

sistence of correlations before and after attacks. Extensive

results demonstrate the accuracy of the proposed method. In

the future work, the detection sensitivity towards different

attacked state variables in smart grid can also be analyzed.
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