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a b s t r a c t

In wireless sensor networks, performing data aggregation while preserving data confiden-
tiality and integrity is challenging. Recently, privacy homomorphism-based secure data
aggregation schemes have been proposed to seamlessly integrate confidentiality and data
aggregation. However, these schemes do not provide data integrity or allow hierarchical
data aggregation if more than one encryption key is used in the network. This paper pre-
sents a novel integrity protecting hierarchical concealed data aggregation protocol that
allows the aggregation of data packets that are encrypted with different encryption keys.
In addition, during the decryption of aggregated data, the base station is able to classify
the encrypted and aggregated data based on the encryption keys. The proposed data aggre-
gation scheme employs an elliptic curve cryptography-based homomorphic encryption
algorithm to offer data integrity and confidentiality along with hierarchical data
aggregation.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

A wireless sensor network is composed of a large num-
ber of sensor nodes that have strictly limited computation
and communication abilities and power resources [1]. In
the near future, these networks are predicted to be em-
ployed widely in security sensitive applications, including
critical area surveillance, office automation, health moni-
toring, and military tracking. Hence, security is an essential
issue in wireless sensor networks, and widespread deploy-
ment of these networks could be curtailed by the lack of
adequate security [2]. Security in wireless sensor networks
mostly involves confidentiality and integrity of the col-
lected data. Confidentiality is usually achieved by prevent-
ing outsiders from understanding the transmitted data
packets. Integrity means that the receiver node is guaran-
teed to notice if the received data packet is modified by

other nodes. However, compared with conventional desk-
top computers, implementing security mechanisms that
provide confidentiality and integrity is not easy in wireless
sensor networks due to the limited processing power, stor-
age, bandwidth, and sensor node energy [2].

In a wireless sensor network, sensor nodes are generally
spread over the area to be monitored, where they self-
organize into a multi-hop network. Each sensor node gath-
ers data from its sensing region and sends this data to the
base station over a multi-hop path. In such a network, high
communication costs, limited battery power, and scarce
bandwidth resources make it challenging to provide effi-
cient solutions to the data gathering problem [3]. Data
aggregation is an important primitive that aims to combine
and summarize data packets from several sensor nodes so
that communication bandwidth and energy consumption
are reduced [4]. However, in terms of security, data aggre-
gation is risky. A sensor node that is compromised by an
adversary can either illegally disclose the data it collects
from other nodes or report arbitrary values as its aggrega-
tion results. Therefore, an adversary can compromise both
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the confidentiality and the integrity of the data of a large
portion of the wireless sensor network by capturing a
number of data aggregators that are positioned close to
the base station.

Because both data aggregation and security are critical
for wireless sensor networks, achieving secure data aggre-
gation that protects integrity has been an attractive goal
for researchers [5–16]. In existing secure data aggregation
protocols, data aggregators generally decrypt every mes-
sage they receive, aggregate the messages according to
the corresponding aggregation function, and encrypt the
aggregation result before forwarding it. Therefore, while
these data aggregation protocols protect data integrity
and improve the bandwidth and energy utilization of the
network, they negatively affect other performance metrics,
such as delay and data confidentiality. Recently, several
data aggregation protocols [17–20] that provide data con-
fidentiality without causing delay have been proposed.
However, these protocols are not resilient against attacks
targeting the data integrity because homomorphic encryp-
tion schemes are malleable by design. While data confi-
dentiality is indeed important, preserving the integrity of
the sensed data is a more critical goal. For example, if data
integrity is not provided in a critical area surveillance
application, an adversary can deceive the base station by
corrupting the collected data. Therefore, it is crucial to de-
sign secure data aggregation schemes that provide both
data confidentiality and integrity.

In this paper, we propose an Integrity Protecting Hierar-
chical Concealed Data Aggregation (IPHCDA) protocol. This
novel protocol allows hierarchical aggregation of encrypted
sensor data while providing confidentiality and integrity.
Moreover, aggregated data can be classified at the base sta-
tion based on the encryption keys. The proposed protocol
employs a privacy homomorphic encryption scheme [21]
and message authentication codes (MAC) to achieve hierar-
chical data aggregation that preserves data confidentiality
and integrity. In the network deployment phase, IPHCDA

protocol virtually partitions the network into several re-
gions and employs a different public key in each region.
The data collected in a region is encrypted using the public
key of the region, and the MAC of the aggregated data is
computed. The encrypted data of several regions can be
hierarchically aggregated into a single piece of data without
violating data confidentiality. To preserve data integrity
during hierarchical aggregation, the MAC of each region is
combined using the XOR function, resulting in a single
MAC that is verified by the base station. During the decryp-
tion of the aggregated data, the base station is able to clas-
sify the aggregated data based on the encryption keys and
verify the MAC of the aggregated data, thereby achieving
data integrity. This method is particularly useful when
the base station needs to analyze the data from a certain re-
gion in the network. For example, in a battlefield surveil-
lance application, the base station may need to analyze
data from a certain part of the battlefield. In this case, IPH-
CDA is able to serve this specific information to the base
station without violating the data confidentiality, integrity,
or energy efficiency requirements of the application. Fig. 1
presents the battlefield surveillance example. The figure
also summarizes the motivation behind the IPHCDA proto-
col. The security analysis shows that the IPHCDA scheme is
resilient against general security attacks. In addition, the
performance evaluation results indicate that IPHCDA is fea-
sible for resource-constrained sensor nodes.

Our contribution in this paper is to provide a concealed
data aggregation technique that protects integrity and al-
lows hierarchical aggregation of data encrypted with dif-
ferent keys. To the best of our knowledge, this work is
the first to propose an integrity-protecting concealed data
aggregation scheme for a multi-data aggregator model.

The rest of the paper is organized as follows. In Sec-
tion 2, the current state of secure data aggregation is de-
scribed. Section 3 explains the system model and
preliminaries and offers a network deployment scenario.
The IPHCDA protocol is outlined in Section 4. Security anal-

Region 1

 Region 3

Region 2

Region 4

Concealed
Aggregated Data

of Region 1

Base
Station

Concealed
Aggregated Data

of Regions 1 and 3

Concealed
Aggregated Data
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Data of
Region 1

Data of
Region 3

Data of
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Fig. 1. The motivation behind IPHCDA protocol. A battlefield surveillance network consists of four deployment regions. Each region’s data are hierarchically
aggregated without violating data confidentiality and integrity. During the decryption of the aggregated data, the base station is able to extract data from
each deployment region based on the encryption keys.
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ysis of IPHCDA is described in Section 5, and performance
evaluation is presented in Section 6. Finally, concluding re-
marks are made in Section 7.

2. Related work

In the wireless sensor network domain, the secure data
aggregation has been extensively studied [5–16]. In [5], a
security mechanism that detects node misbehaviors, such
as dropping or forging messages and transmitting false
data, is presented. In [6], random sampling mechanisms
and interactive proofs are used to check the correctness
of the aggregated data at base station. In [7], sensor nodes
first send data aggregators the characteristics of their data
to determine which sensor nodes have distinct data; those
sensor nodes with distinct data then transmit their en-
crypted data. In [8], the witness nodes of data aggregators
also aggregate data and compute MACs to help verify the
correctness of the aggregators’ data at the base station. In
[9], sensor nodes use the cryptographic algorithms only
when cheating activity is detected. The authors of [10] pro-
pose that during a normal hop-by-hop aggregation process
in a tree topology, more trust is placed on the high-level
sensor nodes (i.e., nodes closer to the root) than the low-le-
vel nodes. [11] proposes a protocol that makes use of a web
of trust to overcome the shortcomings of cryptography-
based secure data aggregation solutions.

The schemes proposed in [12] aim to bridge the gap be-
tween collaborative data aggregation and data privacy. The
authors present two privacy-preserving data aggregation
schemes for additive aggregation functions: Cluster-based
Private Data Aggregation (CPDA) and Slice-Mix-AggRegaTe
(SMART). CPDA leverages the clustering protocol and alge-
braic properties of polynomials so that the communication
overhead is reduced. SMART employs data-slicing tech-
niques and the associative property of addition. In the pro-
posed scheme, each sensor node slices its data into n
pieces, and the pieces are then securely distributed to
n � 1 nearest sensor nodes for aggregation. The authors
of [13] propose a family of secret perturbation-based
schemes that can protect sensor data confidentiality with-
out disrupting additive data aggregation. In the proposed
schemes, the base station shares a secret with each sensor
node. When a sensor node has a sensory data item to re-
port, it does not report the original data but the sum of
the original data and the secret shared with the base sta-
tion. Compared to existing schemes, the proposed schemes
provide confidentiality protection for both raw and aggre-
gated data with lower overhead. In [14], sensor nodes form
clusters to perform secret aggregation. To hide the individ-
ual sensor readings, the proposed scheme employs twin-
keys shared by node pairs within a cluster. The cluster
aggregates are sent in clear text to be further aggregated
to compute the final aggregate. The proposed scheme en-
sures that the individual values and the identity of the con-
tributing nodes cannot be derived by any node in the
network. The authors of [15] propose several efficient
mechanisms for privately querying wireless sensor net-
works. Two network models are presented. In the first
one, access to sensor readings is provided by a single orga-

nization. In the second one, any of multiple, mutually dis-
trusting organizations can perform this operation. In [16],
PriSense is proposed as a novel solution to privacy-
preserving data aggregation in people-centric urban
sensing systems. PriSense is based on the concept of data
slicing and supports additive and non-additive aggregation
functions with accurate aggregation results. Moreover,
PriSense provides strong user privacy against a tunable
threshold number of colluding users and aggregation
servers.

The protocols in [17,18] utilize symmetric and asym-
metric privacy homomorphic encryption to allow aggrega-
tion of encrypted data. However, in [17], sensor data must
be encrypted with a single key to perform concealed data
aggregation. Therefore, to hierarchically aggregate data of
the whole network, sensor nodes in the network must
use a common key for data encryption. Using a single sym-
metric key is not secure because an adversary can fake the
aggregated results through compromising a single sensor
node. In addition, symmetric key-based privacy homomor-
phism is shown to be insecure for chosen plaintext attacks
for some specific parameter settings [24]. The scheme pro-
posed in [18] relies on asymmetric key-based privacy
homomorphism, but it uses a single public key. Therefore,
it is not possible to classify sensor data after it is aggre-
gated. The scheme proposed in [19] allows using different
encryption keys in aggregated data. The authors employ an
extension of the one-time pad encryption technique using
additive operations modulo n. However, several practical
issues are not addressed in this paper. First of all, each
aggregated data packet is coupled with the list of sensor
nodes that failed to contribute to the aggregation, and this
fact makes the scheme impractical for large wireless sen-
sor networks. Second, a strong synchronization mechanism
must be implemented to perform aggregation correctly.
While these protocols provide data confidentiality to data
aggregation process, it should be noted that they are not
resistant to attacks targeting the data integrity because
homomorphic encryptions are malleable by design. IPH-
CDA, however, integrates homomorphic encryption and
MACs to offer data integrity and confidentiality together.
In [20], privacy preserving integrity-assured aggregation
data aggregation is studied for a single aggregator model.
Our work differs from [20] by offering integrity protecting
hierarchical concealed data aggregation for the multiple
data aggregator model. In addition, our protocol enables
the base station to classify aggregated data based on the
encryption keys.

3. System model and preliminaries

We consider a large sensor network with densely de-
ployed sensor nodes. Due to the dense deployment, sensor
nodes have overlapping sensing regions, and events are de-
tected by multiple sensor nodes. Hence, data aggregation is
needed to reduce data transmission. Some sensor nodes
are dynamically designated as data aggregators to aggre-
gate data from their neighboring sensor nodes. To balance
the energy consumption of sensor nodes, the role of
data aggregator is rotated among sensor nodes based on

S. Ozdemir, Y. Xiao / Computer Networks 55 (2011) 1735–1746 1737



Author's personal copy

their residual energy levels. Sensor nodes have limited
computation and communication capabilities. For exam-
ple, Mica2 motes [22] have a 4 Mhz 8bit Atmel micropro-
cessor and are equipped with an instruction memory of
128 KB and a RAM of 4 KB. All messages are time-stamped
and nonces are used to prevent reply attacks. Sensor nodes
encrypt their data prior to data transmission, and data
aggregators authenticate their aggregation result by com-
puting the MAC of the aggregated data. Encrypted data
are decrypted and validated only at the base station. The
base station is interested in the data from a region in the
network rather than the data from a single sensor node.
Therefore, the network deployment area is divided into
several deployment regions as described below.

3.1. Key distribution and network deployment

IPHCDA assumes that the network area is divided into
regions and a public/private key pair is assigned to each re-
gion. Sensor nodes of a region are given the public key of
their respective region. The base station holds the private
keys. In addition to the public key, each sensor node i
shares a unique MAC key Ki

m with the base station.
To virtually divide the network area into several re-

gions, the sensor network is deployed using a strategy de-
scribed in [23]. Before the deployment, IPHCDA divides
sensor nodes into several groups and assigns a public key
to each deployment group. Then, each group is deployed
from a certain location over the network area. The network
deployment is achieved by dropping the sensor node
groups from a plane or a helicopter. Hence, each deploy-
ment group covers a part of the network. The idea behind
the group based network deployment is that the base sta-
tion is able to classify the data of a sensor node group
based on the public key of that group thereby achieving
spatial data gathering.

In the network deployment scenario, we assume that
sensor nodes are distributed with a Gaussian (Normal) dis-
tribution. The Gaussian distribution allows us to compute
the maximum distance between two deployment points
over the network area. In a Gaussian distribution, the dis-
tances between the deployment point of sensor nodes
and their final locations are guaranteed to be less than
3r with probability 0.9987, where r is the standard devia-
tion of a Gaussian distribution. If each sensor node group
covers a circular area with radius 3r centered at its deploy-
ment point, the network area is fully covered. Therefore, to
have full coverage of the network area, the distance (d) be-
tween two deployment points should not exceed 3

ffiffiffi
2
p

r, as
shown in Fig. 2.

3.2. Privacy homomorphism

A privacy homomorphism is an encryption transforma-
tion that allows direct computation on encrypted data. Let
Enc and Dec denote encryption and decryption processes,
respectively. Also, let + denote addition and � denote mul-
tiplication operation over a data set Q. Assume that Kr and
Ku are the private and public keys of the base station,
respectively. An encryption transformation is accepted to
be additively homomorphic if

aþ b ¼ DecKr ðEncKuðaÞ þ EncKuðbÞÞ where a; b 2 Q

and it is accepted to be multiplicatively homomorphic if

a� b ¼ DecKr ðEncKuðaÞ � EncKuðbÞÞ where a; b 2 Q :

Because additively and multiplicatively homomorphic
cryptographic functions support additive and multiplica-
tive operations on encrypted data, respectively, data aggre-
gators can perform addition- and multiplication-based
data aggregation over the encrypted data. Privacy homo-
morphic encryption can be achieved using symmetric or
asymmetric cryptography. Recently, privacy homomor-
phism based on symmetric key cryptography has been
shown to be insecure in chosen plaintext attacks for some
specific parameter settings [24]. Therefore, for mission
critical networks, asymmetric cryptography-based privacy
homomorphism should be used instead of symmetric cryp-
tography-based privacy homomorphism. However, public
key-based privacy homomorphism is prohibitively expen-
sive for resource-limited wireless sensor networks.

Realizing that asymmetric cryptography-based privacy
homomorphism incurs high computational overhead, the
IPHCDA protocol employs the elliptic curve cryptogra-
phy-based privacy homomorphic encryption scheme pro-
posed in [21]. This scheme allows concealed aggregation
of data that are encrypted with different keys. Although
the encryption scheme of [21] provides additive and mul-
tiplicative homomorphism, IPHCDA protocol only takes
advantage of the additive homomorphism property be-
cause multiplicative homomorphism is quite expensive.
Below, we describe the additive homomorphic encryption
process of the IPHCDA protocol using a similar notation
to [21].

� Key generation: Given a security parameter s 2 Z com-
pute u(s) to generate the tuple (q1,q2,E,n). E is a set
of elliptic curve points that form a cyclic group. The
set E should be on the order of n where n = q1q2. Ran-
domly select two points (u and g) of order n from E.
Set h ¼ uq2 where h’s order is q1. Set the public key as
Pu = (n,E,g,h) and the private key as Pr = q1.
� Encryption: Set an integer T where T < q2, and let the bit

length of T be close to the bit length of q2. The message

Fig. 2. Determining the positions of the deployment points: Radius (r) of
each circle is 3r by Gaussian distribution; therefore, the maximum
distance (d) between any two deployment points cannot exceed 3

ffiffiffi
2
p

r to
provide full coverage.
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M space should consist of integers in the set {0,1, . . .,T}.
To encrypt a message m using public key Pu, pick a ran-
dom r {0,1, . . . ,n � 1} and compute the ciphertext
C ¼ gm þ hr where + is the addition of elliptic curve
points and ab is the scalar multiplication of elliptic
curve points a and b. It should be noted that because
the encryption process relies on the random number r,
the resulting ciphertext is probabilistic; therefore, the
scheme is resilient to chosen plaintext attacks [24].
� Decryption: To decrypt a ciphertext C using the private

key Pr = q1, observe that Cq1 ¼ ðgm þ hrÞq1 ¼ ðgq1 Þm. Let
ĝ ¼ gq1 ; then, to recover m, compute the discrete log
of Cq1 base ĝ. It should be noted that the message m is
between 0 and T; therefore, the decryption operation
takes Oð

ffiffiffi
T
p
Þ time using Pollard’s lambda method [25].

� Aggregation: Two ciphertexts C1 ¼ gm1 þ hr1 and C2 ¼
gm2 þ hr2 are aggregated into a ciphertext of C0 as
follows:

C0 ¼ C1 þ C2 ¼ gðm1þm2Þ þ hðr1þr2Þ:

For more details, such as proof of homomorphism, inter-
ested readers are referred to [21]. Let us offer an example
of how this encryption scheme can be employed in wire-
less sensor networks. To encrypt a message mi, a sensor
node Ni first chooses a random number ri and computes
the ciphertext Ci ¼ gmi þ hri using the public key (n,E,g,h).
Similarly, to encrypt a message mj, a sensor node Nj first
selects a random number rj and computes the ciphertext
Cj ¼ gmj þ hrj using the public key (n,E,g,h). Assume that
a data aggregator aggregates Ci and Cj into Cagg and sends
it to the base station. Then, the base station computes
the aggregated message by calculating the discrete loga-
rithm of Cq1

agg to the base ĝ where q1 is the private key
and ĝ ¼ gq1 .

4. IPHCDA: integrity protecting hierarchical concealed
data aggregation

In this section, we first describe the IPHCDA protocol’s
modified homomorphic encryption scheme that allows
aggregation of data of k deployment groups where k > 1.
Then, we show how IPHCDA provides integrity protection
to aggregated data. Finally, we present a concrete example
of IPHCDA protocol for a wireless sensor network that con-
sists of two deployment groups.

4.1. Hierarchical concealed data aggregation

In the previous section, we explained the homomorphic
encryption scheme of [21]. If the sensor network uses a
single public–private key pair, this encryption scheme
can be used in the IPHCDA protocol directly. However,
the IPHCDA protocol aims to hierarchically aggregate data
of multiple sensor node groups (i.e., deployment regions)
that use different public–private key pairs. Hence, the
homomorphic encryption scheme of [21] should be modi-
fied in the following way:

� Key generation: Given a security parameter s 2 Z, com-
pute u(s) to generate the tuple (q1,q2, . . . ,qk+1,E,n). E

is a set of elliptic curve points that form a cyclic group.
The order of E is n where n = q1q2� � �qk+1. Next, randomly
select k + 1 points (u1,u2, . . . ,uk+1) from E where the
order of ui is n for i = 1 to k + 1. Set h as follows:

h ¼ ub
kþ1 where b ¼

Yk

i¼1

qi and i ¼ 1; . . . ; k:

The order of h is qk+1. Now, we need k public keys for k
deployment groups; hence, we compute a P value for
each deployment group in the following way:

Pz ¼ ga
z where a ¼

Ykþ1

i¼1;i–z

qi and z ¼ 1; . . . ; k:

The public key of the deployment group z is Pz
u ¼

ðn; E; Pz; g;hÞ for z = 1 to k, and the private key is
Pr = (q1,q2, . . . ,qk+1).
� Encryption: Set Tz < qz, and let the bit length of Tz be

approximately close to the bit length of qz. The message
M space of a sensor node that belongs to the deploy-
ment group z should consist of integers in the set
{0,1, . . . ,Tz}. To encrypt a message m using public key
Pz

u, pick a random r  {0,1, . . . ,n � 1} and compute
the ciphertext C ¼ Pm

z þ hr where + is the addition of
elliptic curve points and ab is the scalar multiplication
of elliptic curve points a and b.
� Aggregation: Let

P
mi denote that the aggregated mes-

sage of the ith deployment group; consequently, k
ciphertexts Cz ¼ Pmz

z þ hrz for z = 1 to k are aggregated
into a ciphertext of C0 as follows:

C0 ¼
Xk

i¼1

P
P

mi

i þ h
P

ri :

� Decryption: During the decryption, the base station is
able to separately decrypt the data of each deployment
group z from the aggregated ciphertext C0. Let cgz be

cgz ¼ ga
z where a ¼

Ykþ1

i¼1;i–z

qi and z ¼ 1; . . . ; k;

then the base station can recover the aggregated dataP
i¼zmi of each deployment group z by computing the

discrete log of ðC0Þa base ĝz. Therefore, the decrypted
data of deployment group z isX

i¼z

mi ¼ logbgi
ðC0Þa where bgi ¼ ga

z ;

a ¼
Ykþ1

i¼1;i–z

qi; and z ¼ 1; . . . ; k:

4.2. Integrity protection of aggregated data

By falsifying the aggregated data, an adversary can
manipulate the measurements of a large portion of the
wireless sensor network. Therefore, in addition to data
privacy, IPHCDA aims to protect the integrity of the aggre-
gated data in the following way. Each sensor node encrypts
its data using the public key of the region in which it resides
and sends it to the data aggregator of the region. The data
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aggregator DAi receives encrypted data from the sensor
nodes in the ith region and aggregates (C0i) as described
above. DAi also computes the MAC of the aggregated data
C0i (MACðC0iÞ) using the unique symmetric key that it shares
with the base station. All DAis, where 1 < i 6 k and k is the
number of deployment regions; forward their aggregated
data and MAC pair (C0i;MACðC0iÞ) to the base station over
the aggregation tree as shown in Fig. 1. On the aggregation
tree, when a data aggregator DAt receives C0i, MAC C0i

� �
and

C0j; MAC C0j
� �

from data aggregators DAi and DAj, it aggre-

gates C0i and C0j and XORs MAC C0i
� �

and MAC C0j
� �

. Therefore,

the base station receives the aggregation of all C0is and a sin-
gle MACðC0Þ, which is an XOR of all MAC C0i

� �
s where 1 < i 6 k

and k is the number of deployment regions. When the base
station receives the aggregated data, it obtains the data of
each DAi and computes MACðC�i Þs for each DAi. To validate
the aggregated data, the base station computes MACðC�Þ
by XORing all MAC C�i

� �
and compares MACðC�Þ and

MACðC0Þ. It should be noted that IPHCDA can provide data
integrity protection to individual sensor readings as well.
However, in that case, the base station would need the list
of all sensor nodes that contributed to the aggregated data,
thereby incurring too much communication overhead.

4.3. An illustrative example

In this section, we present an example to show how the
IPHCDA protocol achieves integrity protection and hierar-
chical concealed aggregation of multiple deployment
groups’ data. For the sake of simplicity, let us assume that
the network consists of four deployment groups and only
two groups send data to the base station. Group 1 has
the public key P1

u ¼ ðn; E; P1; g;hÞ, and group 2 has the pub-
lic key P2

u ¼ ðn; E; P2; g; hÞ. As shown in Fig. 3, each group
has two sensor nodes and a data aggregator. Group 1 has
sensor nodes SNA

1, SNB
1 and data aggregator DA1. Similarly,

group 2 has sensor nodes SNA
2, SNB

2 and data aggregator
DA2. Furthermore, assume that DA1 and DA2 share a sym-
metric keys Ks

1 and Ks
2 with the base station, respectively.

There is also another data aggregator DA3 in group 3 that
aggregates and transmits data from DA1 and DA2 to the
base station. To keep the example simple, the order of P1,
P2, and h are set to small numbers in the following way:

� Order of P1 and value of q1 is 11
� Order of P2 and value of q2 is 13

� Order of h and value of q3 is 17
� Order of n = q1q2q3 is 2431

Sensor nodes in groups 1 and 2 encrypt and send their data
in the following way (note that r values are randomly gen-
erated by sensor nodes):

� SNA
1 generates message MA

1 ¼ 1 and encrypts it as
CA

1 ¼ P1
1 þ h4

� SNB
1 generates message MB

1 ¼ 3 and encrypts it as
CB

1 ¼ P3
1 þ h6

� SNA
2 generates message MA

2 ¼ 4 and encrypts it as
CA

2 ¼ P4
2 þ h2

� SNB
2 generates message MB

2 ¼ 2 and encrypts it as
CB

2 ¼ P2
2 þ h7

Sensor nodes send their messages to data aggregators.
Data aggregator DA1 aggregates CA

1 and CB
1 as C1 ¼ P4

1 þ h10

and computes MACðC1Þ using Ks
1. Similarly, data aggregator

DA2 aggregates CA
2 and CB

2 as C2 ¼ P6
2 þ h9 and computes

MACðC2Þ using Ks
2. DA1 and DA2 forward their aggregated

Data, and MAC pairs to DA3. DA3 aggregates C1 and C2 as
C ¼ P4

1 þ P6
2 þ h19. Because the order of h is 17, h17 =1,

and 1 is the additive unit element in elliptic curve arith-
metic, we can write C ¼ P4

1 þ P6
2 þ h2. In addition, DA3 per-

forms the following XOR operation MACðCÞ ¼ MACðC1Þ�
MACðC2Þ and sends C;MACðCÞ to the base station.

To obtain the data of group 1, the base station first com-
putes Cq2q3 ¼ ðP4

1 þ P6
2 þ h2Þ221. Because ab donates scalar

multiplication of elliptic curve points, Cq2q3 equals P884
1 þ

P1326
2 þ h442. Note that h17 =1, P11

1 ¼ 1, and P13
2 ¼ 1. Thus,

using elliptic curve arithmetic, we can write Cq2q3 ¼ P4
1.

Finally, the base station obtains the data of group 1 by com-
puting the discrete logarithm of Cq2q3 ¼ P4

1 to the base cg1

where cg1 ¼ gq2q3
1 . Once the base station obtains data from

DA1 and DA2, it computes their MACs MAC C�1
� �

and
MAC C�2

� �
, respectively. Then, the base station XORs the com-

puted MACs as MACðC�Þ ¼ MAC C�1
� �

�MAC C�2
� �

. If the result-
ing MACðC�Þ and the original MACðCÞmatches, then the base
station validates the integrity of the aggregated data.

5. Security analysis

In this section, we show IPHCDA’s resistance to attacks
that are described in [26], where authors summarize all
possible attacks against any concealed data aggregation
scheme. Due to space constraints, the details of the secu-
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DA 3

Base Station

C 1
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C

Fig. 3. Example of IPHCDA protocol. For the sake of simplicity, only two groups send data to the base station. DA3 aggregates data of DA1 and DA2.
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rity of encryption algorithm are not included here, but
interested readers are referred to [21].

5.1. Ciphertext analysis

In a wireless environment, the most basic attack is the
analysis of encrypted packets in which the adversary tries
to obtain information only by interpreting ciphertexts. Be-
cause IPHCDA’s elliptic curve cryptography-based encryp-
tion depends on the factorization of large integers, it is
robust to ciphertext analysis.

5.2. Known plaintext attack

In this kind of attack, the adversary wants to determine
secret information with a known plaintext and corre-
sponding ciphertext. At the end of this attack, the adver-
sary is able to either reveal the secret key or gather some
information that he/she can use to deduce malicious
ciphertexts. Because IPHCDA’s encryption process relies
on random numbers, the resulting ciphertext is probabilis-
tic. Therefore, the IPHCDA scheme is robust to known
plaintext attacks.

5.3. Replay attacks

In a replay attack, previously sent valid packets are
transmitted later to achieve a malicious effect. The encryp-
tion scheme of IPHCDA does not offer any protection
against replay attacks. However, the IPHCDA protocol pre-
vents this attack by time stamping all data packets.

5.4. Malleability

Adversaries may want to exhaust sensor nodes by send-
ing them randomly generated meaningless ciphertexts
that are syntactically correct. This attack only slows down
the operation of the network. Adversaries can also change
the content of the legitimate ciphertexts in this attack, thus
falsifying the network data. Hence, concealed data aggre-
gation schemes should not let adversaries be able to
change the contents of ciphertexts. IPHCDA employs MACs
to prevent attacks targeting data integrity. Therefore, an
attacker can successfully change a ciphertext if and only
if he/she can forge a valid MAC tag for the ciphertext. Con-
sidering that IPHCDA uses an unforgeable MAC protocol,
such as HMAC [27], attackers cannot successfully forge
aggregated data packets.

5.5. Unauthorized aggregation

In a homomorphic data aggregation protocol, the
encryption key and the MAC key must be known by the
adversary to achieve unauthorized aggregation. Hence, in
IPHCDA, an adversary must compromise at least one data
aggregator so that he/she can obtain the encryption and
MAC keys and successfully perform unauthorized aggrega-
tion. The adversary cannot achieve unauthorized aggrega-
tion by compromising a regular sensor node because
there is only one data aggregator in each deployment re-
gion, and the base station would notice the compromised

node. In some of the previous privacy homomorphism-
based concealed data aggregation schemes, adversaries
are able to perform unauthorized aggregation without
any additional information [17].

5.6. Forge packets

In any public key-based encryption scheme, there is no
need to forge data packets because it easy to generate
proper ciphertexts using the public key. Therefore, to pro-
tect data integrity, public key-based schemes must be used
with additional protection. As explained in Section 5.4,
IPHCDA use an unforgeable MAC protocol (such as HMAC
[27]) to prevent aggregated data from forgery attacks.

5.7. Physical attacks

Node compromise attacks target sensor node hardware
to execute or support an attack. In IPHCDA, if an adversary
compromises a data aggregator, it can perform unautho-
rized aggregation and send false aggregation results to
the base station. However, due to the asymmetric public
key approach, an adversary cannot gain any additional
information regarding the data aggregated. Hence, in
IPHCDA, physical attacks can affect the data integrity but
not the data confidentiality.

6. Performance evaluation

From the resource consumption point of view, symmet-
ric key-based homomorphic encryption schemes are more
efficient than public key-based ones. However, the security
of public key-based homomorphic encryption schemes has
been shown to be stronger than symmetric key-based ones.
Therefore, rather than symmetric key-based schemes, the
performance of IPHCDA is compared with two other public
key-based homomorphic encryption schemes: namely
EC-OU [26] and EC-EG [26].We evaluated the computa-
tional overhead, the communication load, and the accuracy
of IPHCDA, EC-OU, and EC-EG schemes.

6.1. Computational overhead

Our computational overhead evaluation includes
encryption, decryption, and addition operations. We fol-
lowed the performance evaluation methodology defined
in [26] where all computations are converted to and mea-
sured in terms the number of base units (1024-bit modular
multiplications). It should be noted that IPHCDA, EC-OU,
and EC-EG schemes are built upon different mathematical
foundations. Hence, a base unit of measurement must be
used to achieve a fair comparison. Similar to [26], the mea-
surement unit chosen in our computational overhead com-
parison is the 1024-bit modular multiplication. In addition,
we assume that the number of deployment regions in IPH-
CDA is 4. For an elliptic curve computation over a finite
field Fp, the number of jpj-bit modular multiplications is
first counted, and it is then converted to 1024-bit modular
multiplications. The results are presented in Fig. 4 (a), (b),
and (c). The results show that due to its smaller modulus
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operations in computation [26], EC-EG has the lowest com-
putational overhead, and the performance of IPHCDA and
EC-OU are close to each other. However, neither EC-OU
nor EC-EG can support hierarchical concealed data aggre-
gation if different keys are used in the network.

6.2. Communication cost

To evaluate the communication cost, we first compute
the ciphertext size of each scheme. For IPHCDA, the num-
ber of deployment regions affects the size of jnj (in bits),
which is on the order of elliptic curve points. Note that n
is composed of (k + 1) q-bit prime numbers and n = q1 �
q2 � q3 � � � � � qk+1 where k is the number of deployment
regions. Also note that the encryption process involves
the addition of elliptic curve points that are on the order
of n. It follows that IPHCDA’s ciphertext size is (k + 1) � jqj.
Hence, in IPHCDA scheme, the ciphertext size increases as
the number of deployment regions increases. In [26], it is
shown that EC-OU’s ciphertext size is 3 � jqj + 2 (jqj =
341-bit) and EC-EG’s ciphertext size is jqj + 2 (jqj = 163-
bit). Similar to EC-OU, we used 341-bit qs for IPHCDA
(jqj = 341-bit) in our evaluation. The comparison of cipher-

text sizes are depicted in Fig. 5. The results show that if the
number of deployment regions is more than 3, EC-EG and
EC-OU outperform IPHCDA. However, neither EC-OU nor
EC-EG can support IPHCDA’s unique properties, such as
hierarchical data aggregation and the separation of aggre-
gated data at the base station. It can also be observed from
the Fig. 5 that there is a tradeoff for IPHCDA between secu-
rity, number of deployment regions and ciphertext size. To
achieve stronger security (i.e., longer jqj) and low commu-
nication overhead, we must reduce the number of deploy-
ment regions. Similarly, to have a large number of
deployment regions and low communication overhead,
we must reduce the size of jqj, thereby reducing the secu-
rity level. Hence, the selection of jqj and the number of
deployment regions depends on the level of security re-
quired by the application.

6.3. Simulation results

To show the benefit of IPHCDA’s hierarchical data
aggregation property, IPHCDA, EC-OU, and EC-EG schemes
are simulated using TinyOS 2.0 Simulator (TOSSIM) [28]. In
three simulation scenarios, 120, 150 and 200 sensor nodes
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Fig. 4. Performance comparison of EC-OU, EC-EG, and IPHCDA. (a) Encryption cost. (b) Addition cost. (c) Decryption cost.
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Fig. 5. The ciphertext sizes of IPHCDA, EC-OU, and EC-EG. For IPHCDA, size of jqj is selected as 341-bit.
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are placed in uniformly distributed random locations with-
in a 160 m � 160 m rectangular area where the base sta-
tion is located on one corner. The simulation area is
vertically divided into 3, 4, and 5 deployment regions
where each region has a data aggregator. A static beacon-
based ad hoc routing algorithm is used to transfer data
from data aggregators to the base station. Due to the poor
radio conditions of wireless sensor networks, a retransmis-
sion mechanism is implemented, and the retransmission
limit is set to 5. The default bit error rate is 5%, which
can be accepted as a poor radio condition. The medium ac-
cess scheme is set as CSMA using the default TinyOS 2.0
CC2420 stack, which has 4 bits per symbol and 64 K sym-
bols per second, for 256 Kbps. Due to the high bit error
rates and limitations of TinyOS protocol stack, the maxi-
mum MAC layer frame size is set as 39-byte, as depicted
in Fig. 6. In the previous section, it is shown that IPHCDA’s
aggregated ciphertext can be up to 300-bytes. The Fig. 6
also shows how ciphertexts are put into the application
layer packets. Clearly, a single MAC layer frame size is
not sufficient for this application data packet size. More-
over, it is not practical to send such large data packets over
a wireless medium due to high bit error rates. Therefore, in
IPHCDA protocol, before data transmission, application
layer data packets (both chiphertext and message authen-
tication code) are divided into smaller blocks that can fit
into medium access layer frames. For example, if k = 5
and ciphertext size is 300, each application layer packet
of IPHCDA is divided into 10 blocks where each block is
less than 30 bytes and assigned a sequence number. Upon
receiving these small data blocks, the base station recon-
structs the application data packet using the assigned se-
quence numbers.

To evaluate the communication overhead, sensor nodes
are deployed in a 160 m � 160 m network area in three dif-
ferent simulation scenarios: 120, 150 and 200. The total
data transmission amount in the network is measured for

IPHCDA, EC-OU, and EC-EG schemes. The network area size
is the same for all of the scenarios; hence, the node density
of the network is increased as the number of sensor nodes
increases. Each simulation run lasts for 600 s, and each re-
sult is averaged over 10 simulation runs. In case of IPHCDA,
data aggregators are allowed to aggregate other data
aggregators’ forwarded data, thereby achieving hierarchi-
cal data aggregation. In EC-EG and EC-OU cases, data are
aggregated only in the deployment region without hierar-
chical data aggregation. In the first scenario, 70 sensor
nodes out of 120 nodes were randomly chosen to send
100 data packets to their data aggregators. In the second
scenario, 150 nodes were used, of which 100 sensor nodes
were randomly selected to send 100 data packets to their
data aggregators. Similarly, in the third scenario, 125 sen-
sor nodes were randomly chosen from 200 sensor nodes to
send 100 data packets to their data aggregators. The results
are presented in Fig. 7. The simulation results show that
although ciphertext size of IPHCDA is greater than EC-OU
and EC-EG, hierarchical data aggregation reduces the total
amount of data transmission in the network. We can see
from Fig. 7 (a) that when the number of deployment re-
gions is 3 or 4 IPHCDA should be used instead of EC-OU
or EC-EG. If the number of deployment groups is greater
than 4, then IPHCDA can be used only in cases in which
the base station needs to analyze each deployment region’s
data separately. However, the results also show that
increasing the number of data-transmitting nodes in-
creases the data aggregation efficiency of IPHCDA com-
pared to EC-OU and EC-EG. The reason behind this
improvement can be explained in the following way. As
the density of the network increases, each data aggregator
is able to aggregate data of more sensor nodes, thereby
improving the efficiency of hierarchical data aggregation.
Therefore, the decision of employing IPHCDA in a network
depends on the network size, the number of deployment
regions of the network, and the base station needs.
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Message Authentication 
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Sequence
Number
(1-byte)

Block 1
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Fig. 6. (a) The medium access layer frame format of IPHCDA. (b) The application packet format of IPHCDA (k = 5). To comply with the MAC layer, the packet
is divided into 10 packets. Each packet is less than 30 bytes and assigned a sequence number.
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Another factor that affects the total data transmission
amount in the network is the bit error rate. In [29], a
real-world wireless sensor network experimental study
shows that bit errors occur in bursts and there are usually
200 or more consecutive error-free bits between two con-
secutive burst errors. We followed the same loss model in
[29] and evaluated the effect of the bit error rate on the to-
tal data transmission amount of the network using IPH-
CDA, EC-OU and EC-EG schemes. We used a network of
120 sensor nodes and varied the bit error rate from 3% to
10%. The results are presented in Fig. 8, which shows that
increasing the bit error rate also increases the amount of
data transmission in the network. This is due to the
employment of the retransmission mechanism under a
high number of frame errors.

6.4. Accuracy

Traditional data aggregation algorithms, such as com-
pression-based data aggregation, may result in alterations
in collected data. Therefore, preserving data accuracy is an
important issue for traditional data aggregation schemes.
IPHCDA, EC-OU, and EC-EG, however, provide additive

homomorphic capabilities through the summation of
ciphertexts, and they do not change data during data
aggregation. Therefore, these additive homomorphic
schemes preserve data accuracy after data aggregation.
For these schemes, the only factors that affect the accuracy
of aggregated data are lost/delayed data packets and com-
putational errors. In the ideal case, when there is no data
loss or computational error in the network, all of these
schemes achieve 100% data accuracy. However, due to
noisy communication channels, delays, and collisions,
packet losses frequently occur in wireless sensor networks.
Hence, the data accuracy is negatively affected. We evalu-
ated the data accuracy of IPHCDA, EC-OU, and EC-EG
schemes. Following the metric proposed in [12], the data
accuracy is defined as the ratio between the real sum of
raw sensor data and the aggregated sum by the data aggre-
gation scheme in use. The accuracy value of 1 represents
the perfect case. In the simulation, 120 sensor nodes and
5% it error rate are used. The accuracy of IPHCDA, EC-OU,
and EC-EG with respect to different time intervals between
packet transmissions is measured. The results are pre-
sented in Fig. 9 (a). The results show that IPHCDA, EC-
OU, and EC-EG perform equally in terms of aggregation
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Fig. 7. The total amount of data transmission in the network for different network sizes: (a) 120 sensor nodes, (b) 150 sensor nodes, (c) 200 sensor nodes.
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accuracy. It can also be seen from the results that the accu-
racy increases as the time intervals between packet trans-
missions increases. This result is due to the reduction in
data collusions and congestion in data aggregators. We
have also evaluated the effect of bit error rate on the data
aggregation accuracy. The results are presented in Fig. 9
(b). Using 120 sensor nodes, the bit error rate varies from
3% to 10%. The results indicate that increasing the bit error
rate reduces the data aggregation accuracy of all data
aggregation schemes. This result is due to the fact that
higher bit error rates result in higher packet losses.

7. Conclusion

This paper presented the Integrity Protecting Hierarchi-
cal Concealed Data Aggregation (IPHCDA) protocol. The
proposed scheme is based on a homomorphic encryption
algorithm, and it allows the aggregation of data packets
that are encrypted with different keys. During the decryp-
tion of the aggregated data, the base station is able to clas-
sify the encrypted and aggregated data based on the
encryption keys. This property is particularly useful in
applications where the base station needs to obtain data
from a certain part of the network. In addition, the pro-
posed protocol provides integrity protection to aggregated
data. To the best of our knowledge, IPHCDA is the first data
aggregation scheme that can provide both data confidenti-
ality and integrity in a multi-data aggregator sensor
network model. Simulation results show IPHCDA’s applica-
bility to wireless sensor networks and that its data aggrega-
tion efficiency are better than other privacy homomorphic
data aggregation schemes.
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