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Abstract— The ongoing coronavirus disease 2019 (COVID-19)
is a pandemic causing millions of deaths, devastating social
and economic disruptions. Testing individuals for severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen
of COVID-19, is critical for mitigating and containing COVID-19.
Many countries are implementing group testing strategies against
COVID-19 to improve testing capacity and efficiency while
saving required workloads and consumables. A group of indi-
viduals’ nasopharyngeal/oropharyngeal (NP/OP) swab samples
is mixed to conduct one test. However, existing group testing
methods neglect the fact that mixing samples usually leads to
substantial dilution of viral ribonucleic acid (RNA) of SARS-
CoV-2, which seriously impacts the sensitivity of tests. In this
paper, we aim to screen individuals infected with COVID-19 with
as few tests as possible, under the premise that the sensitivity of
tests is high enough. To achieve this goal, we propose an Adaptive
Group Testing (AdaGT) method. By collecting information on the
number of positive and negative samples that have been identified
during the screening process, the AdaGT method can estimate
the ratio of positive samples in real-time. Based on this ratio, the
AdaGT algorithm adjusts its testing strategy adaptively between
an individual testing strategy and a group testing strategy. The
group size of the group testing strategy is carefully selected
to guarantee that the sensitivity of each test is higher than a
predetermined threshold and that this group contains at most
one positive sample on average. Theoretical performance analysis
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on the AdaGT algorithm is provided and then validated in
experiments. Experimental results also show that the AdaGT
algorithm outperforms existing methods in terms of efficiency
and sensitivity.

Note to Practitioners—Real-time reverse transcription-
polymerase chain reaction (rRT-PCR) tests provide scope for
automation and are one of the most widely used laboratory
methods for detecting the SARS-CoV-2 virus. This paper is
motivated by the following challenges: (1) Many countries are
experiencing an acute shortage of professionals and consumables
for conducting rRT-PCR tests; (2) Group sizes of existing
group testing methods against COVID-19 may not be optimal,
which adversely impacts the efficiency of the screening of the
SARS-CoV-2 virus; (3) Existing group testing methods do not
consider the fact that the sensitivity of rRT-PCR tests usually
decreases with the group size. The objective of this paper is to
improve the efficiency and sensitivity of large-scale screening
against COVID-19. For achieving this goal, we propose an
Adaptive Group Testing (AdaGT) algorithm, which has the
following advantages: (1) It can improve the efficiency for
screening the SARS-CoV-2 virus, mainly by adaptively adjusting
its testing strategy between an individual testing strategy and a
group testing strategy based upon an estimated ratio of positive
samples during the screening process; (2) It can guarantee a
high sensitivity of the rRT-PCR tests by determining the group
sizes of the group testing strategy based upon some constraints;
(3) We derive an appropriate threshold for the estimated ratio
of positive samples such that the AdaGT algorithm can achieve
a minimum average number of rRT-PCR tests and can be
directly employed in practical applications.

Index Terms— Searching algorithms, tree, binary tree
searching, COVID-19, SARS-CoV-2, group testing, screening,
sensitivity, efficiency.

I. INTRODUCTION

THE coronavirus disease 2019 (COVID-19) is an infec-
tious disease caused by a newly discovered virus

named severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) [1]. It was first detected in China and later
characterized as a pandemic by World Health Organization
(WHO) [2], [3]. As of 15 February 2021, COVID-19 is
affecting more than 200 countries and territories globally [4],
and the total number of confirmed cases amounts to nearly
110 million, including almost 2.4 million deaths [5]. Since half
of the world’s population is required by their governments to
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stay at home to prevent the further spread of the deadly virus,
the pandemic has caused devastating social and economic
disruptions [6], [7]. It is reported that millions of enterprises
face an existential threat, and nearly half of the world’s
3.3 billion global workforces are at the risk of losing their
livelihoods [7]. The pandemic is projected to cause around
9 trillion dollars of economic losses in 2020 and 2021 and
has caused the worst global economic crisis since the Great
Depression in 1929 [8].

Among all efforts to contain and mitigate the pandemic
(such as social distancing and contact tracing), testing indi-
viduals for SARS-CoV-2 plays a critical role in helping
isolate or hospitalize infected people and release uninfected
people from quarantine. Specifically, individuals with positive
results are isolated immediately to prevent further spread
of the COVID-19 and provided with medical treatment at
once to avoid exacerbation of the disease [9]. Further-
more, since their close contacts have a high risk of getting
infected with the COVID-19, they are also tested quickly
and treated appropriately. Besides, individuals with negative
tests can resume normal daily activities such as working
and schooling, which can maximally alleviate the economic
disruption and inconvenience to people’s life. Moreover,
testing individuals for SARS-CoV-2 can also help inves-
tigators characterize the disease’s prevalence, spread, and
contagiousness [10].

Currently, real-time reverse transcription-polymerase chain
reaction (rRT-PCR) is one of the most widely used labora-
tory methods for detecting the SARS-CoV-2 virus (we will
explain how to conduct the rRT-PCR tests clinically later).
Since asymptomatic and presymptomatic COVID-19 patients
are common and are likely a major source of COVID-19
transmission, experts have recommended large-scale screening
for COVID-19 infections using rRT-PCR tests [11]. However,
many countries are experiencing an acute shortage of labora-
tories, trained personal, testing kits, and other consumables
like tips, reagents, and bins for conducting rRT-PCR tests,
limiting the testing capacity. For example, in the United
States of America, in the week of December 9-16, 2020,
68.8% of laboratories on average suffer from the shortage
of COVID-19 testing supplies [12]. In the Maharashtra state
of India, due to the shortage of rRT-PCR kits, people have
to wait at least two to three days for getting rRT-PCR
tests [13].

To improve testing capacity and efficiency and save required
workloads and consumables, many countries are implementing
group testing strategies against COVID-19 [14], by which
a group of individual nasopharyngeal/oropharyngeal (NP/OP)
swab samples are grouped to get an rRT-PCR test. A negative
result implies that all individuals in the group are clear. A
positive result indicates that there is at least one infected
person among this group of individuals. Existing group testing
methods for screening the SARS-CoV-2 virus can be roughly
categorized into hierarchical and non-hierarchical methods.
The popular hierarchical methods consist of a certain number
of stages, and in each stage, samples are tested once in
non-overlapping groups. In contrast, non-hierarchical methods
also involve testing over stages, but samples may be tested

more than once per stage via overlapping pools [15]. Existing
methods suffer from the following limitations:

1) When determining stage numbers, group sizes, and the
set of samples to be tested, both categories of methods
do not explain the rationality. Since little information
of prior test results is leveraged, these parameters are
usually not optimal, adversely impacting the screening
efficiency.

2) Both categories of methods do not consider that mixing
samples usually leads to substantial dilution of viral
RNA in the grouped samples to impact the sensitivity
of rRT-PCR tests seriously [16].

To address the above limitations, in this paper, we aim to
screen the SARS-CoV-2 virus with as few rRT-PCR tests as
possible, under the premise that the sensitivity of tests is high
enough. To achieve this goal, we propose an Adaptive Group
Testing (AdaGT) method. By collecting information on the
number of both positive and negative samples that have been
determined during the screening process, the AdaGT method
can estimate the ratio of positive samples in real-time. Based
on this ratio, the AdaGT method adaptively adjusts its testing
strategy between an individual testing strategy and a group
testing strategy. Specifically, if the estimated ratio is larger
than a predetermined threshold, the AdaGT method applies an
individual testing strategy by which the NP/OP swab samples
are tested one by one. Otherwise, the AdaGT method applies
a group testing strategy. The group size of the group testing
strategy is carefully selected to guarantee that the sensitivity
of each rRT-PCR test is higher than a predetermined threshold
and that, on average, there is at most one positive sample
among these samples. If an rRT-PCR test on a group of NP/OP
swab samples gets a positive result, the AdaGT algorithm
adopts a binary testing strategy to conduct more rRT-PCR tests
on this group of samples until one positive sample is identified.
The contributions of this paper are highlighted as follows:
• To the best of our knowledge, this is the first work

of group testing methods to consider the sensitivity
of rRT-PCR tests during the screening process against
COVID-19;

• We propose an AdaGT algorithm which can improve the
efficiency for screening the SARS-CoV-2 virus, mainly
by adaptively adjusting its testing strategy between an
individual testing strategy and a group testing strategy
based upon an estimated ratio of positive samples during
the screening process;

• The AdaGT algorithm can guarantee a high sensitivity
of the rRT-PCR tests, mainly by choosing an appropriate
group size for the group testing strategy;

• We provide performance analysis on the AdaGT algo-
rithm, mainly including the minimum upper bound of the
number of rRT-PCR tests and the selection of threshold
parameter for the estimated ratio of positive samples
during the screening process;

• Experiments are conducted to evaluate the performance
of the AdaGT algorithm. Experimental results show that
the AdaGT algorithm outperforms existing group testing
methods against COVID-19 efficiency and sensitivity.
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We organize the rest of this paper as follows. We introduce
related works in Section II. We present the problem statement
in Section III. We demonstrate the working strategy of the
proposed AdaGT algorithm in Section IV. The performance
analysis on the AdaGT algorithm is provided in Section V. The
simulation results are reported in Section VI. We conclude this
paper in Section VII.

II. RELATED WORKS

Group testing originates from World War II for syphilis
screening [17]. Since then, it has been used to screen other
infectious viruses such as hepatitis B/C and human immun-
odeficiency virus (HIV) [18]. Group testing methods have
also been used for many other applications such as com-
pressive sensing [19], multi-access channel management [20],
electricity theft detection [21], [22], etc. Since the outbreak
of the COVID-19 pandemic, researchers have done some
works on developing efficient group testing methods to screen
the SARS-CoV-2 virus, which, as aforementioned, can be
roughly categorized into hierarchical and non-hierarchical
methods [15].

Most of the existing methods belong to hierarchical meth-
ods, in which groups of samples tested in one stage are non-
overlapping. For example, the authors in [23] present a binary
testing protocol by which if the samples in a group are tested
to be positive, half of the samples in this group are tested
further. This process iterates until all individuals’ statuses
(“infected” or “not infected”) are determined [23]. The authors
in [24] propose a multi-stage group testing scheme, by which
the initial group size is a power function whose exponent is
equal to a predetermined total number of stages. If the rRT-
PCR test on a group of samples gets a positive result, then this
group is divided into non-overlapping smaller groups to get
more rRT-PCR tests [24]. In [25], the authors employ a group
testing strategy that switches the group size from eight samples
to five samples when the prevalence rate increases from 0.5%
to 6%. If an rRT-PCR test on a group of samples gets a
positive result, then the samples in this group are retested
individually [25]. The array testing algorithm in [15] is a
typical non-hierarchical method, by which samples arranged in
a two-dimensional grid are first tested by rows and by columns,
respectively. Afterward, samples at intersections of positive
rows and columns are retested separately [15].

However, in the above group testing methods, the (initial)
group sizes or the total number of stages are decided in
advance. As pointed out in [26], it is important to determine
the group size before implementing the group testing strate-
gies. However, the authors in [15], [23], [24] do not explain
why it is reasonable to set them as these numbers. Also, when
determining which samples to be tested in the next rRT-PCR
test, these group testing methods consider the local information
(e.g., results of current rRT-PCR tests), instead of the global
information (e.g., results of all past rRT-PCR tests). This may
result in determining which samples to test in the next rRT-
PCR test may not be optimal. The above limitations adversely
impact the efficiency of screening against COVID-19.

Furthermore, these group testing methods against
COVID-19 do not consider that mixing samples usually

leads to substantial dilution of viral RNA in the grouped
samples. This seriously impacts the sensitivity of the rRT-PCR
tests [16], where sensitivity is defined as the ratio of the
number of positive samples that are correctly identified as
being positive to the total number of positive samples. For
example, the authors in [27] observe that when a single
positive sample is mixed with 15 negative samples, the
sensitivity is approximately 96%. When it is mixed with
31 negative samples, the sensitivity reduces to about 90%.
Clinically, the cycle threshold is an important parameter
for determining whether an NP/OP swab sample contains
the SARS-CoV-2 virus or not (the definition is given out
later). As indicated in [28], with the cutoff value of cycle
threshold of a single sample and grouped samples being set
as 35 and 40, respectively, the grouped positive samples have
100% sensitivity in group sizes 2, 4, and 6 and 97% ∼ 99%
sensitivity in group sizes 8, 10, and 16. In [29], with the
group size being set as 10, the authors have the following
observations: (1) if the original sample has a high viral load,
sample grouping does not affect the sensitivity of the assay;
(2) however, for samples with a low initial viral load, the
false-negative rate is about 13.3%, which means that the
sensitivity (i.e., the true positive rate) reduces to about 86.7%.

In this paper, to address the above limitations, we pro-
pose the AdaGT method, which adaptively adjusts its testing
strategy between an individual and a group testing strategy
during the screening process. When the group testing strategy
is applied, the group size is carefully selected such that the
sensitivity of rRT-PCR tests is higher than a predetermined
threshold and, on average, there is at most one positive sample
among these samples for improving the efficiency.

III. PROBLEM STATEMENT

Real-time reverse transcription-polymerase chain reaction
(rRT-PCR) tests are one of the most widely used laboratory
methods for detecting the SARS-CoV-2 virus, mainly due to
the following advantages: (1) easy to perform (2) have high
sensitivity, (3) have more specificity, and (4) provide scope for
automation. Clinically, the rRT-PCR tests are performed with
the following steps: (1) Step 1: ribonucleic acid (RNA) extrac-
tion, in which several chemical solutions are used to extract
the RNA present in the clinical nasopharyngeal/oropharyngeal
(NP/OP) swab samples; (2) Step 2: reverse transcription,
in which the extracted RNA is reversely transcribed to deoxyri-
bonucleic acid (DNA) using a specific enzyme; (3) Step 3:
polymerase chain reaction (PCR), in which a series of repeated
temperature changes, called thermal cycles, are used to trigger
specific chemical reactions on the products of Step 2 to
amplify target sections of viral DNA [30].

For monitoring the progress of the PCR reaction in real-
time, dyes emitting fluorescent signals are attached to new
copies of the viral DNA sections [30]. With each succes-
sive cycle of amplification, the products of Step 3 double,
and hence the fluorescence signal of DNA binding dyes
increases [30]. Let Ct denote the cycle threshold, defined as the
number of thermal cycles of chemical reactions required for
the fluorescent signal of DNA binding dyes to exceed that of
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the background [31]. Generally, a smaller Ct value indicates a
higher viral load in the starting NP/OP swab samples, which
indicates a more severe viral infection [32]. In applications,
we usually set a cutoff value for Ct to help judge whether
the NP/OP swab samples contain the SARS-CoV-2 virus.
Specifically, if Ct does not exceed the cutoff value, the
corresponding NP/OP swab samples are considered positive
samples (i.e., containing the SARS-CoV-2 virus); otherwise,
the corresponding NP/OP swab samples are considered to be
negative samples [32].

In this paper, we have the following assumptions:
• There are a total number of n NP/OP swab samples,

denoted by setting N = {x1, x2, · · · , xn}, where xi

denotes the i -th sample. We assume that among the n
samples, m samples containing SARS-CoV-2 virus, where
m ∈ {0, 1, · · · , n}.

• We apply the rRT-PCR tests for detecting the SARS-
CoV-2 virus. If an individual’s NP/OP sample is tested
to be negative, then this individual is considered to be
not infected with COVID-19; otherwise, if an individual’s
NP/OP sample is tested to be positive, then this individual
is considered to be infected with COVID-19.

• An rRT-PCR test that probes a group of samples con-
taining/not containing the SARS-CoV-2 virus is likely to
return a false negative/positive result mistakenly. As indi-
cated in [33], false-negative results mainly occur through
sample deficiency, concurrent respiratory infection and
test inhibitors; and false-positive results mainly occur
in erroneous testing and cross-reactions. More details
about reasons causing false negative/positive results are
analyzed in Section IV-B.

This paper aims to screen out the m positive samples with
as few rRT-PCR tests as possible, under the premise that the
sensitivity of the rRT-PCR tests is high enough.

IV. AN ADAPTIVE GROUP TESTING METHOD

A. Overview

This section explains the working strategy of the proposed
adaptive group testing (AdaGT) method for screening the
SARS-CoV-2 virus. The basic idea of the AdaGT algo-
rithm is to estimate the ratio of positive samples during
the screening process. According to the estimated positive
sample ratio, it then adaptively adjusts the testing strategy
between an individual testing strategy and a group test-
ing strategy. Particularly, when the group testing method is
applied, we first analyze the maximum group size under
some constraints (demonstrated later in subsection IV-B).
Afterwards, the group size is determined to be of some special
forms (demonstrated later in subsection IV-C). Then, we fur-
ther apply different group testing strategies (demonstrated
later in subsection IV-D) to screening samples. For better
understanding, we depict a flow chart demonstrating the above
working strategies of the AdaGT algorithm in Fig. 1.

We first demonstrate how to estimate the ratio of positive
samples during the screening process. Let M and H denote
the set of samples whose statuses have been determined as
being “positive” and “negative” during the screening process,

Fig. 1. A flow chart demonstrating the working strategies of the AdaGT
algorithm.

respectively. Let W denote the set of samples to be further
tested. Then, we have: W = N−M − H . Let y(0 � y � 1)
denote the ratio of positive samples to the total number of
samples. y is usually unknown in practical applications. Since
samples are randomly chosen for the rRT-PCR tests, we can
roughly estimate y as the ratio of the number of samples in
M to the total number of samples in both M and H . We have

ỹ =
{

0, if M ∪ H = ∅;
|M|

|M|+|H | , otherwise
(1)

where ỹ denotes the estimate of y and | · | denotes the
cardinality of a set.

Next, we demonstrate how the AdaGT algorithm adjusts
the testing strategy between individual testing and a group
testing strategy. Let y0(0 � y0 � 1) be a threshold parameter
that is determined before the screening process. As shown
in Fig. 2, if the estimated ratio ỹ � y0, we adopt the
individual testing strategy, by which NP/OP swab samples are
tested individually. If an rRT-PCR test gets a positive result,
then the corresponding individual is infected with COVID-19;
otherwise, this individual is not infected with COVID-19.

On the other hand, if ỹ < y0, we apply the group testing
strategy, by which a group of NP/OP samples is mixed together
to get one rRT-PCR test. If this rRT-PCR test gets a negative
result, then all samples in this group are considered negative.
Otherwise, there is at least one positive sample in this group,
and more rRT-PCR tests should be conducted on these samples
to find out the positive samples.

B. Maximum Group Size Analysis

When the group testing method is applied, we need first to
determine the group size. In this subsection, we first analyze
the maximum group size under some constraints to achieve
this purpose.

Let s denote the number of the grouped samples examined
in one rRT-PCR test. A positive rRT-PCR test is defined as
probing a group of s samples containing the SARS-CoV-2
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Fig. 2. An example to illustrate the AdaGT algorithm.

virus. A negative rRT-PCR test is defined as a test to probe
a group of samples not containing the SARS-CoV-2 virus.
We define sensitivity and specificity, as well as explain
efficiency.
• Sensitivity: Let f (s) (0 � f (s) � 1) denote sensitivity

which is defined as the probability that a positive rRT-
PCR test correctly returns a positive result. Sensitivity is
also called the true positive rate.

• Specificity: Let h(s) (0 � h(s) � 1) denote specificity
which is the probability that a negative rRT-PCR test
correctly returns a negative result. Specificity is also
called the true negative rate.

• Efficiency: If an rRT-PCR test on a group of samples gets
a negative result, all these samples can be identified as
negative. This is the reason why group testing methods
can help save rRT-PCR tests. Evidently, for achieving
a high screening efficiency, we prefer that an rRT-PCR
test with a negative result examine as many samples as
possible. However, more samples examined by one rRT-
PCR test imply a lower probability that this rRT-PCR
test gets a negative result. Thus, to improve the screening
efficiency, we should carefully select the group size s to
balance between a large group size and a low probability
for a negative result.

Mixing samples not containing the SARS-CoV-2 virus does
not introduce the virus. This implies that if negative rRT-PCR
tests are correctly performed according to the manufacture’s
instructions, before and after mixing samples, values of Ct

exceed the cutoff value such that the rRT-PCR tests return
negative results. In other words, before and after mixing
samples, the specificity h(s) does not change, regardless of
the values of s. Thus, when determining the maximum group
size, we do not involve the specificity of rRT-PCR tests.

For achieving high sensitivity, specificity, and efficiency
for screening the SARS-CoV-2 virus using the rRT-PCR
tests, in the AdaGT algorithm, we adopt the following three
constraints to analyze the maximum group size of samples to
be analyzed in the rRT-PCR tests during the screening process.

(1) Non-Spillover Constraint, s should not exceed the num-
ber of samples whose statuses have not been determined yet.

Then, by the non-spillover constraint, we have

s � |W |, ∀s ∈ N+, (2)

where N+ denotes the set of positive integers.
(2) Minimum Sensitivity Constraint, by which we choose

a group size s such that the sensitivity of rRT-PCR tests is
not less than a pre-determined threshold, denoted as α0, with
0 � α0 � 1 . For example, in applications, we can set
α0 as 0.95 or 0.9 [28]. As discussed in Section I, mixing
samples usually leads to substantial dilution of viral RNA in
the grouped samples. On the whole, the sensitivity of the rRT-
PCR tests monotonically decreases with the group sizes [16],
[27], [28]. Then, f (s) is a decreasing function of s, and we
have f (s) ≤ f (1) ≤ 1. By the minimum sensitivity constraint,
we have f (s) � α0. Let smsc denote the maximum group size
satisfying the minimum sensitivity constraint. Then, we have

s � smsc = max{s|α0 ≤ f (s) ≤ f (1) ≤ 1, s ∈ N+}, (3)

where max(·) returns the maximum value of a set.
(3) One-Positive-Sample Constraint, by which we choose a

group size s such that, on average, there is at most one positive
sample in this group to improve the method’s efficiency.
Technically, we have sy � 1, from which we can derive s � 1

y .
Let sops denote the maximum s satisfying the one-positive-

sample constraint. Then, we have s � sops =
⌊

1
y

⌋
. If we

know the ratio of positive samples, i.e., y, we can choose
an appropriate s to satisfy the one-positive-sample constraint.
However, as discussed early, in applications, we usually do
not know the exact value of y, but can only roughly estimate
it according to Equation (1). Thus, in applications, we have

s � sops =
{+∞, if ỹ = 0⌊

1
ỹ

⌋
, if ỹ > 0

, ∀s ∈ N+, (4)

where sops denotes the maximum s satisfying the one-positive-
sample constraint.

Let smax denote the maximum group size s that satisfies
all the above three constraints. Then, we have smax � |W |,
smax � smsc and smax � sops , from which we can derive

s � smax = min
{
smsc, sops , |W |

}
, (5)

where min(·) returns the minimum value of a set.
Next, we discuss false-negative and false-positive as

follows.

• False-Negative: Sensitivity is related to false-negative rate
since the summation of false-negative rate and sensitivity
is 1. If a positive rRT-PCR test mistakenly returns a
negative result, a false negative result occurs. Common
reasons for false-negative results mainly include (1) inad-
equate laboratory rRT-PCR performance; (2) sample defi-
ciency or degradation; (3) technical reasons relating to kit
primers, probes, and fluorescence type; (4) SARS-CoV-2
mutations; and (5) RT-PCR inhibitors [33]. When samples
are tested in groups, the viral RNA is diluted. According
to the working principles of rRT-PCR tests in Section III,
the dilution effect will increase the cycle threshold value
(i.e., Ct ). If Ct is increased to be a number greater
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than the cutoff value, all the s samples, including those
with the virus, are identified as negative samples. On the
whole, a larger s value implies a more severe dilution
and thereby a larger Ct . A larger Ct is more likely to
exceed the cutoff value. Thus, we can conclude that under
the dilution effect, the false-negative rate monotonically
increases with the group size s. Therefore, the sensitivity
f (s) monotonically decreases with the group size s as
mentioned before.

• False-Positive: Specificity is related to false-positive rate
since the summation of false-positive rate and speci-
ficity is 1. Based upon reports released by the Centers
for Disease Control and Prevention, the specificity of
rRT-PCR tests is usually very high such that if rRT-PCR
tests are performed strictly by manufacturer’s instructions,
false-positive results are almost impossible [34], [35].
However, in practical applications, false-positive results
can still occur due to the following reasons: (1) inade-
quate laboratory rRT-PCR experience; (2) SARS-CoV-2
cross-contamination; (3) detection of unspecified corona-
viruses; (4) SARS-CoV-2 inactive/residual detections;
(5) cross-reaction with nucleic acids from other pathogens
or tissue cells; and (6) technical reasons relating to kit
primers, probes, and fluorescence type [33]. In this paper,
we assume that the probability that an rRT-PCR test
mistakenly returns a positive result is ε1, where ε1 is a
small constant between 0 and 1. Since the summation of
specificity and the false positive rate equals 1, we have
h(s) = 1− ε1.

C. Group Size Determination

With the knowledge of the maximum group size under
the above constraints, we demonstrate how to deter-
mine the group size during the screening process in this
subsection.

To better understand, we first introduce a doubling strategy
and a jumping strategy, which are commonly used to guide
the group testing procedure. Both of the above two strategies
greatly increase the group size if the results of previous rRT-
PCR tests are negative, which helps to save the rRT-PCR
tests for identifying negative samples. The basic idea of the
doubling strategy is to double the previous group size every
time. Specifically, by the doubling strategy, disjoint groups
of 20, 21, 22, · · · samples are probed sequentially until one
rRT-PCR test returns a positive result [36]. Let sdb denote
the group size, which has the same form as in the doubling
strategy. Then, we have sdb = 2k2 , with k2 being a natural
number. In contrast, the basic idea of the jumping strategy
is to merge every two subsequent groups in the doubling
strategy into one group. Specifically, by the jumping strategy,
disjoint groups of 20 + 21, 22 + 23, 24 + 25, · · · samples are
probed until an rRT-PCR test returns a positive result [36].
Let s j p denote a group size that has the same form as in
the jumping strategy. Then, we have s j p = 2k1 + 2k1+1, with
k1 being an even natural number. In the following, we apply
the jumping/doubling strategy if the group size is of the same
form as in the jumping/doubling strategy.

We first demonstrate how to determine the group size in the
case ỹ = 0, where no samples have already been identified
as positive. When there are no positive samples in a group
of samples, the jumping strategy improves over the doubling
strategy [37]. Thus, in the case ỹ = 0, we apply the jumping
strategy to guide the group testing procedure. Specifically,
we initialize the value of k1 as 0. If the rRT-PCR test returns
a negative result, then the value of k1 increases by 2. That
is to say, at the j -th rRT-PCR test of the jumping strategy,
we have k1 = 2 j − 2, with j ∈ N+. Since during the
screening process, the maximum group size is smax , we have
s j p = 2k1 + 2k1+1 = 22 j−2 + 22 j−1 � smax , from which
we can derive k1 �

⌊
log2

1
3 smax

⌋
and j �

⌊
1
2 log2

smax
3

⌋ + 1.
This implies that the value of k1 can increase to at most⌊

log2
1
3 smax

⌋
. Besides, the group size increases until at most

the (
⌊

1
2 log2

smax
3

⌋+ 1)-th rRT-PCR test.
We next demonstrate in the case ỹ = 0 how to determine

the group size after the (
⌊

1
2 log2

smax
3

⌋ + 1)-th rRT-PCR test
(if any). In this case, for examining as many samples as
possible with one rRT-PCR test, instead of sticking to either
the doubling strategy or the jumping strategy as in [21], [22],
we adaptively adjust the strategies between the jumping strat-
egy and the doubling strategy such that the group sizes are
as large as possible and do not exceed smax . Specifically,
we set k1 =

⌊
log2

1
3 smax

⌋
, with which we can then obtain

the maximum s j p that does not exceed smax . Afterwards,
we set k2=

⌈
log2s j p

⌉= ⌈
log2(2

k1 + 2k1+1)
⌉= ⌈

log23 · 2k1
⌉=⌈

log23+ log22k1
⌉ = k1 + 2, with which we can then obtain

the smallest sdb that is larger than the above s j p. Technically,
we have sdb = 2k1+2 = 4 · 2k1 > s j p = 2k1 + 2k1+1 = 3 · 2k1 .
If sdb � smax , we set the group size s = sdb; otherwise,
we set the group size s = s j p. For example, in the case
smax = 18, we set k1 =

⌊
log2

1
3 smax

⌋ = 2, according to
which we can then calculate s j p = 22 + 23= 12. Afterwards,
we set k2=

⌈
log212

⌉=4, according to which we can calculate
sdb = 2k2 = 16. Since sdb = 16 < smax = 18, we then set
s=16.

For the cases ỹ > 0, we also determine the group size by
adjusting the strategies between the jumping strategy and the
doubling strategy adaptively as above.

Regardless of the case ỹ = 0 or the case ỹ > 0, we have
s j p = 2k1 + 2k1+1 � 20 + 21 = 3. Thus, the above strategies
can only be used when |W | � 3. With regard to the case
|W | < 3, we set the group size s = smax . Evidently, in this
case, s equals either 1 or 2.

D. Group Testing Strategies

After the group size, s, is determined, one rRT-PCR test
is immediately performed on a group of s randomly chosen
samples in W . If the result of the rRT-PCR test is “negative”,
then these s samples are identified as negative samples;
otherwise, there is at least one positive sample among these s
samples.

We first consider the case where the group size s has the
same form as in the jumping strategy (i.e., 2k1+2k1+1). In this
case, we perform another rRT-PCR test on a subset of 2k1

samples of these samples, which are randomly chosen from
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the 2k1 + 2k1+1 samples. The testing procedure proceeds as
follows:

(1) If this rRT-PCR test gets a positive result, then among
this subset of 2k1 samples, there is at least one positive
sample. In this case, we apply a binary testing strategy (whose
working strategies are explained later) to find out at least
one positive sample from this subset of 2k1 samples. We do
not know whether there are samples among the remaining
2k1+1 samples containing the SARS-CoV-2 virus. Besides, the
testing results of the 2k1 samples lead to an update of the
estimated ratio of positive samples (i.e., ỹ), which further
results in an update of the maximum group size satisfying the
one-positive-sample constraint (i.e., sops ). If sops is decreased
to be smaller than 2k1+1, it violates the one-positive-sample
constraint to perform the next rRT-PCR test on the remaining
2k1+1 samples. As stated in subsection IV-C, the group size
should be as close to (but not exceed) smax as possible. Hence,
if sops is increased to be much larger than 2k1+1, it is also not
appropriate to perform the next rRT-PCR test on the remaining
2k1+1 samples. In this paper, we update the group size for the
next rRT-PCR test based upon the newly updated ỹ, and the
remaining 2k1+1 samples are put back with the samples in W ,
waiting for further rRT-PCR tests shortly.

(2) Otherwise, if the rRT-PCR test on the subset of 2k1 sam-
ples gets a negative result, we can infer that these 2k1 samples
are negative, and hence they are put into set H . We can also
infer that there are positive samples among the remaining 2k1+1

samples. Thus, we apply the binary testing strategy to find out
at least one positive sample from the remaining 2k1+1 samples.
On the other hand, when the group size s has the same form
as in the doubling strategy, we also apply the binary testing
strategy to identify at least one positive sample.

The binary testing strategy proceeds as follows: (1) First,
we perform one rRT-PCR test on half of the samples in
this subset of 2k1 , i.e., 2k1−1 samples. (2) If this rRT-PCR
test gets a positive result, we perform another rRT-PCR test
on these 2k1−1 samples, and the remaining 2k1−1 samples are
put back into W . (3) Otherwise, if this rRT-PCR test gets a
negative result, the 2k1−1 samples are identified as negative
samples and are put into set H . Simultaneously, we per-
form another rRT-PCR test on the remaining 2k1−1 samples.
(4) The above processes (2)∼ (3) repeat k1 times. Particularly,
at the (k1− 1)-th rRT-PCR test of the processes (2) ∼ (4),
two samples are probed; and at the k1-th rRT-PCR test of the
processes (2) ∼ (4), only one sample is probed. If the k1-th
rRT-PCR test gets a positive result, this sample is identified
as a positive sample, and the other sample examined at the
(k1 − 1)-th rRT-PCR test is put back into W . Otherwise,
if the k1-th rRT-PCR test gets a negative result, this sample is
identified as a negative sample, and the other sample examined
at the (k1 − 1)-th rRT-PCR test is identified as a positive
sample. To sum up, by the above binary testing strategy,
if there is at least one positive sample among a total number
of 2k1 samples, we need to perform k1 + 1 rRT-PCR tests to
locate a positive sample. During this process, some negative
samples may also be identified.

We conclude the above strategies in Algorithm 1, which is
referred to as the Adaptive Group Testing (AdaGT) Algorithm.

Algorithm 1 Adaptive Group Testing (AdaGT)
Input: N = {1, 2, . . . , n}, y0
Output: M, H

1 W ← N, M ← ∅, H ← ∅, ỹ ← 0 ; // W, M, H, ỹ are
global variables

2 k1 ← 0, smsc ← max{s| f (s) � α0, s ∈ N+};
3 while |W | > 0 do
4 if ỹ � y0 then // individual testing
5 X ← pop one sample j out of W ;
6 if rRT− PCR(X) == “positive” then
7 M ← M ∪ X ;
8 else H ← H ∪ X ;
9 else

10 s ← DetermineGroupSize ( ỹ, smsc);
11 X ← pop s samples out of W ;
12 if rRT− PCR(X) == “positive” then
13 if |X |%3 == 0 then
14 X 
 ← |X |

3 samples from X ;
15 X ← UpdateSet(X, X 
)
16 while |X | > 1 do // binary testing
17 X 
 ← |X |

2 samples from X ;
18 X ← UpdateSet(X, X 
)
19 M ← M ∪ X ;
20 else H ← H ∪ X ;
21 Update ỹ according to Equation (1);

22 Function DetermineGroupSize( ỹ, smsc):
23 Update sops according to Equation (4);
24 Update smax ← min

{
smsc, sops , |W |

}
;

25 if |W | � 3 then
26 if ỹ == 0 then // jumping strategy
27 if k1 �

⌊
log2

1
3 smax

⌋
then return Jump (k1);

28 else return AdaJumpDouble (smax );

29 else return AdaJumpDouble (smax ); // ỹ > 0

30 else return smax ;

31 Function Jump(k1):
32 s j p ← 2k1 + 2k1+1;
33 k1 ← k1 + 2;
34 return s j p;

35 Function AdaJumpDouble(smax):
36 k1 ←

⌊
log2

1
3 smax

⌋
, s j p ← 2k1 + 2k1+1;

37 k2 ←
⌈
log2s j p

⌉
, sdb ← 2k2 ;

38 if sdb ≤ smax then return sdb;
39 else return s j p;

40 Function UpdateSet(X, X 
):
41 if rRT− PCR(X 
) == “positive” then
42 W ← W ∪ (X \ X 
), X ← X 
;
43 else H ← H ∪ X 
, X ← X \ X 
;
44 return X ;

In Algorithm 1, we use X to denote a set of NP/OP swab
samples to be tested by an rRT-PCR test and use X 
 to
denote a subset of NP/OP swab samples in X . The func-
tion rRT-PCR represents performing one rRT-PCR test. The
function DetermineGroupSize describes how to determine
the group size. The function Jump describes how to apply the
jumping strategy at the beginning of the screening process.
The function AdaJumpDouble describes how to adaptively
adjust the testing strategy between the jumping strategy and
the doubling strategy. The function UpdateSet describes how
to narrow down the search area.

E. Case Study

For better understanding, we take the example in Fig. 2
to illustrate how the AdaGT algorithm works. Note that in
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Fig. 2, we assume smsc = 20. As shown, for the first rRT-
PCR test (when ỹ = 0), the jumping strategy is applied to
test 20 + 21 = 3 samples. Since the rRT-PCR test returns a
negative result, a total number of 22 + 23 = 12 samples (i.e.,
samples {x4, x5, · · · , x15} are tested at the second rRT-PCR
test, which gets a positive result. Thus, at the third rRT-PCR
test, four samples {x4, x5, x6, x7} are examined. Since the third
rRT-PCR test returns a positive result, there is at least one
positive sample among the samples {x4, x5, x6, x7}, on which
more rRT-PCR tests should be subsequently conducted by
the binary testing strategy. For the remaining eight samples
{x8, x9, · · · , x15}, they are put back with the sample 16 which
remains in set W , waiting for further tests. At this time, W is
updated as {x16, x8, x9, · · · , x15}.

We next demonstrate how we apply the binary testing strat-
egy to find out at least one positive sample from the samples
{x4, x5, x6, x7} after the third rRT-PCR test. Specifically, the
fourth rRT-PCR test is performed on samples {x4, x5}. Since
the fourth rRT-PCR test returns a “negative” result, samples
{x4, x5} are identified as negative samples and are put into H .
We can also infer that there is at least one positive sample
among the samples {x6, x7}. Next, we perform the fifth rRT-
PCR test on the sample 6, which returns a “positive” result.
Thus, we can identify sample 6 as a positive sample and then
put it in to set M . At the same time, we put back the sample 7
into set W .

V. PERFORMANCE ANALYSIS

In this section, we provide a performance analysis of the
AdaGT algorithm. Specifically, we first analyze the bounds of
the number of rRT-PCR tests of the AdaGT algorithm. Then,
we give out an appropriate selection of the parameter y0, which
is previously defined as a user-specified threshold for ỹ in
Subsection IV-A.

A. Bounds of the Number of rRT-PCR Tests

Let t (n, m) denote the number of rRT-PCR tests when we
apply the AdaGT algorithm to screen out m positive samples
among a total number of n samples.

Theorem 1: Assume that there are no positive samples
among a total number of n samples. Then, we have⌈

3(n+1)
4smsc
− 3

4

⌉
� t(n, 0) �

⌊
1
2 log2

smsc
3

⌋+ ⌊
2n

smsc

⌋
+ ⌊

log2smsc
⌋

.
Proof: If there are no positive samples among a total

number of n samples, then the estimated ratio ỹ is always equal
to 0, which implies that sops = +∞. This implies that in the
case ỹ = 0, we have min

{
smsc, sops , |W |

} = min{smsc, |W |}.
By substituting this into Inequality (5), we can derive s �
smax=min{smsc, |W |} � smsc. Based upon how the group sizes
are determined, the screening process can be divided into the
following three stages:

(1) Stage I in which the jumping strategy and increases
determine the group sizes after every rRT-PCR test. As dis-
cussed early, when the screening process begins, we examine
disjoint groups of NP/OP swab samples of sizes 20+ 21, 22+
23, · · · , 22 j−2+22 j−1 at the first, second, · · · , and the j -th rRT-
PCR tests, respectively. Since s � smax = min{smsc, |W |} �
smsc, we have 22 j−2 + 22 j−1 = 3 · 22 j−2 � smsc, from which
we can derive 0 � j �

⌊
1
2 log2

smsc
3

⌋+ 1.

With the increase of the value of j , the value of 22 j−2 +
22 j−1 finally exceeds smax . In this case, we determine the group
size by adaptively adjusting the strategies between the jumping
strategy and the doubling strategy. That is to say, the group
size equals either s j p = 2k1 + 2k1+1 or sdb = 2k2 , with k1 =⌊

log2
smax

3

⌋
and k2 =

⌈
log2s j p

⌉ = k1+2. Based upon the value
of smax , the screening process after Stage I can be divided into
the following two stages:

(2) Stage II in which W contains at least smsc samples, i.e.,
|W | � smsc, and hence we have smax = min{smsc, |W |} = smsc.
Let j 
 denote the number of rRT-PCR tests in Stage II. Since
the total number of NP/OP swab samples examined in Stage
I is 20 + 21 + · · · + 22 j−2 + 22 j−1 = 4 j − 1 and there is
at least smsc samples in W , in Stage II we examine at most
n − (4 j − 1) − smsc NP/OP swab samples. Since the group
size equals either s j p = 2k1 + 2k1+1 = 3 · 2k1 or sdb = 2k2 =
2k1+2 = 4 · 2k1 , we have⌈

n − (
4 j − 1

)− smsc

4 · 2k1

⌉
� j 
 �

⌊
n − (

4 j − 1
)− smsc

3 · 2k1

⌋
,

with k1 =
⌊

log2
smax

3

⌋ = ⌊
log2

smsc
3

⌋
. Since 0 � j �⌊

1
2 log2

smsc
3

⌋+ 1 ≤ log4
smsc

3 + 1,
we have ⌈

n − (
4 j − 1

)− smsc

4 · 2k1

⌉

�
⌈

n + 1− smsc − 41+log4
smsc

3

4 · 2�log2
smsc

3 �
⌉

�
⌈

n + 1− smsc − 41+log4
smsc

3

4 · 2log2
smsc

3

⌉

=
⌈

3(n + 1)− smsc − 4 · smsc
3

4 · smsc
3

⌉

=
⌈

3(n + 1)− 7smsc

4smsc

⌉

=
⌈

3(n + 1)

4smsc
− 7

4

⌉

=
⌈

3(n + 1)

4smsc
− 3

4

⌉
− 1,

and ⌊
n − (

4 j − 1
)− smsc

3 · 2k1

⌋

�
⌊

n − smsc

3 · 2�log2
smsc

3 �
⌋

�
⌊

n − smsc

3 · 2(log2
smsc

3 )−1

⌋

�
⌊

n − smsc

3 · smsc
3 · 1

2

⌋

=
⌊

2(n − smsc)

smsc

⌋

=
⌊

2n

smsc

⌋
− 2.
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Thus, we have⌈
3(n + 1)

4smsc
− 3

4

⌉
− 4 � j 
 �

⌊
2n

smsc

⌋
− 2.

(3) Stage III: With more NP/OP swab samples examined by
the rRT-PCR tests, there are fewer samples in set W . In Stage
III, we consider the case where the number of samples in W
is less than smsc samples, i.e., |W | < smsc. We have smax =
min{smsc, |W |} = |W |. Thus, in this stage, the group size s is
adaptively adjusted based upon the value of |W |. Specifically,
the value of k1 is adjusted as k1 =

⌊
log2

1
3 smax

⌋ = ⌊
log2

|W |
3

⌋
.

For one rRT-PCR test in Stage III, the minimum number of
NP/OP swab samples to be examined is s j p = 2k1 + 2k1+1 =
3 · 2k1 . Since k1 =

⌊
log2

|W |
3

⌋
� log2

|W |
3 − 1, we have s j p �

3 · 2log2
|W |

3 −1 � |W |
2 . This means that every rRT-PCR test in

Stage III probes at least one half of NP/OP swab samples
remained in W . Let j 

 denote the number of rRT-PCR tests
in Stage III. Then, we have

1 � j 

 �
⌈

log2|W |
⌉

�
⌈

log2smsc
⌉ = ⌊

log2smsc
⌋+ 1.

Thus, combining Stages I, II, and III, we have
⌈

3(n+1)
4smsc
− 3

4

⌉
�

t(n, 0) = j + j 
 + j 

 �
⌊

1
2 log2

smsc
3

⌋ + ⌊
2n

smsc

⌋
+ ⌊

log2smsc
⌋
.

This completes the proof. �
Theorem 2: Assume that there are m positive samples

among a total number of n samples. Then, for 0 < m � n−1
e

where e is the natural constant, we have t (n, m) � β0 +
m log2

n−1
m + 1.42(m − 1), with β0 =

⌊
1
2 log2

smsc
3

⌋ + ⌊
2n

smsc

⌋
+⌊

log2smsc
⌋+ ⌊

log2
smsc

3

⌋+ 2.
Proof: Based upon the value of ỹ, the screening process

by the proposed AdaGT Algorithm 1 can be divided into the
following three procedures:

(1) Procedure 1: ỹ = 0. This procedure involves at least
one of the three stages in Theorem 1 and stops when the
results of the rRT-PCR tests become positive. According to
the proof analysis in Theorem 1, we can easily understand
that for all rRT-PCR tests in the three stages, an rRT-PCR test
in Stage II examines most NP/OP swab samples. This implies
that compared to the cases where we get the first positive
result at one rRT-PCR test in Stage I or Stage III, we need to
perform more rRT-PCR tests to identify one positive sample
when we get the first positive result at one rRT-PCR test in
Stage II.

We next consider the case where we get the first positive
result at one rRT-PCR test in Stage II; how many more
rRT-PCR tests should be conducted to identify one positive
sample. As discussed early, in this case, there are a total
number of s j p = 2k1 + 2k1+1 or sdb = 2k2 = 2k1+1 + 2k1+1

samples, with k1 =
⌊

log2
smsc

3

⌋
. Without loss of generality,

we next assume the group size is s j p = 2k1 + 2k1+1. By the
AdaGT algorithm, after we find that there is at least one
positive sample among these 2k1+2k1+1 samples, another rRT-
PCR test is conducted to check whether there are positive
samples among the first 2k1 samples. (a) If this rRT-PCR test
gets a positive result, then there is at least one positive sample
among these 2k1 samples. Consequently, a total of k1 rRT-PCR
tests are conducted on these samples to identify one positive

sample. (b) Otherwise, if this rRT-PCR test gets a negative
result, we can infer that there is at least a positive sample
among the remaining 2k1+1 samples. For finding out at least
one positive sample from these 2k1+1 samples, k1+1 rRT-PCR
tests are subsequently conducted. To sum up, if we perform
one rRT-PCR test on 2k1 + 2k1+1 samples and it returns a
positive result, we need to conduct 1 + k1 or 1 + (k1 + 1) =
k1 + 2 more rRT-PCR tests on this group of samples to find
out at least one positive sample. Similarly, if a rRT-PCR test
on a group of sdb = 2k2 = 2k1+1 + 2k1+1 samples returns a
positive result, we need to conduct k1 + 2 tests for finding
out at least one positive sample. Let n
 denote the number
of negative samples identified before the first positive result.
Then, the maximum number of rRT-PCR tests for identifying
one positive sample in Procedure 1 is t (n
, 0)+1+ (k1+1) �
t (n, 0) + k1 + 2 �

⌊
1
2 log2

smsc
3

⌋ + ⌊
2n

smsc

⌋
+ ⌊

log2smsc
⌋ +⌊

log2
smsc

3

⌋+ 2.
(2) Procedure 2: 0 < ỹ � y0. In this procedure, the group

size s is adjusted as either s j p = 2k1 + 2k1+1 or sdb = 2k2 =
2k1+2, with k1 =

⌊
log2

smax
3

⌋
and smax = min{smsc,

1
ỹ , |W |}.

Similar to the analysis in Procedure 1, if we perform one rRT-
PCR test on this group of samples which returns a positive
result, we need to conduct k1 + 1 or k1 + 2 more rRT-
PCR tests on this group of samples to find out at least one
positive sample. To sum up, for identifying one positive sample
among s j p = 2k1 + 2k1+1 or sdb = 2k1+1 + 2k1+1 samples,
we need to conduct at most 1 + (k1 + 2) = k1 + 3 rRT-PCR
tests.

(3) Procedure 3: ỹ � y0. The NP/OP swab samples are
tested individually.

Let mi denote the total number of positive samples that
are detected in all occurrences of Procedure i(i = 1,
2, 3). We have m1 + m2 + m3 = m, with m1 = 1. Let
A1, A2, · · · , Am2 be the m2 subsets that are tested in the
corresponding m2 occurrences of Procedure 2. Let ai =
|Ai |, i = 1, 2, · · · , m2. Clearly, for any Ai , we have ai =
s j p = 3 · 2k1 or ai = sdb = 4 · 2k1 . Since s j p < sdb , for
obtaining the maximum number of rRT-PCR tests, we only
need to consider the extreme case where all group sizes in
Procedure 2 are of the form s j p = 3 · 2k1 . In this case,
to locate one malicious user from Ai , we conduct at most
log2

ai
3 + 3 inspection steps. Through the above analyses,

we can derive t (n, m) � β0 + ∑m2
i=1(log2

ai
3 + 3) + m3 �

β0 + ∑m2
i=1(log2 ai) + (3 − log2 3)m2 + m3, where β0 =⌊

1
2 log2

smsc
3

⌋+ ⌊
2n

smsc

⌋
+ ⌊

log2smsc
⌋+ ⌊

log2
smsc

3

⌋+ 2.
From the convexity of log2(x), it follows that∑m2
i=1 log2 ai � m2 log2

∑m2
i=1 ai

m2
� m2 log2

n−m1−m3
m2

�
m2 log2

n−1
m2

. Let f (x) = x log2
n−1

x . Then, we have
f 
(x) = log2

n−1
x − 1

ln 2 , where ln(·) denotes the
logarithm with the base of the natural constant
e = 2.71828 · · · . When x < 2−

1
ln 2 (n − 1) = n−1

e , the
function f (x) increases monotonically. Thus, when
m � 1

e (n − 1), we can derive from the above equation
that

∑m2
i=1 log2 ai � m2 log2

n−1
m2

� m log2
n−1

m . Substituting∑m2
i=1 log2 ai � m log2

n−1
m into the previous result t (n, m) �

β0 + ∑m2
i=1(log2 ai) + (3 − log2 3)m2 + m3„ we can derive

t (n, m) � β0 +∑m2
i=1(log2

ai
3 + 3)+ m3 � β0 + m log2

n−1
m +
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(3− log2 3)(m2+m3) � β0 +m log2
n−1

m + 1.42(m− 1). This
completes the proof. �

Theorem 3: Assume that there are m positive samples
among a total number of n samples. Then, for any 0 < m � n,
we have t (n, m) � β0 + log2 e

e (n − 1) + 1.42(m − 1), where

e is the natural constant and β0 =
⌊

1
2 log2

smsc
3

⌋ + ⌊
2n

smsc

⌋
+⌊

log2smsc
⌋+ ⌊

log2
smsc

3

⌋+ 2.

Proof: From the analysis in the proof of Theorem 2,
we can know that the function f (x) = x log2

n−1
x obtains the

maximum value when x = n−1
e . Thus, from the inequality

in Theorem 1, we can derive t (n, m) � β0 + m log2
n−1

m +
1.42(m−1) � β0+ log2 e

e (n−1)+1.42(m−1). This completes
the proof. �

B. Selection of Parameter y0

As discussed in Section IV, on the whole, the AdaGT
algorithm applies the following two testing strategies: (1) an
individual testing strategy by which NP/OP swab samples are
tested one by one; (2) a group testing strategy whereby a
group of NP/OP swab samples are mixed and then tested
with one rRT-PCR test. During the screening process, the
value of y0 determines which testing strategy is to be applied.
Specifically, if ỹ � y0, the individual testing strategy is
applied; otherwise, if 0 � ỹ < y0, the group testing strategy
is employed. We next discuss choosing the parameter y0 such
that the AdaGT algorithm can achieve the minimum average
number of rRT-PCR tests.

Theorem 4: Assume that we apply the AdaGT algorithm to
screen out m positive samples among a total number of n
samples. Then, the average number of rRT-PCR tests achieves
the minimum when y0 = 1

3 .
Proof: We first calculate the average number of rRT-PCR

tests to locate one positive NP/OP swab sample.
Case 1: the individual testing strategy is applied. If the

estimated ratio of positive samples is ỹ, ỹ = 0, then on average
we need to perform 1

ỹ rRT-PCR tests to locate one positive
NP/OP swab samples.

Case 2: the group testing strategy is applied. As discussed
in Section IV-C, when |W | > 3, then the group size is either
s j p = 2k1 + 2k1+1 or sdb = 2k2 = 2k1+1 + 2k1+1. As indicated
in Procedure 2 of the proof in Theorem 2, for a group of
s j p = 2k1 + 2k1+1 NP/OP swab samples which contain SARS-
CoV-2 virus, if the rRT-PCR test gets on the first 2k1 NP/OP
swab samples gets a positive result, we need to conduct
k1 more rRT-PCR tests to locate one positive sample from
the 2k1 NP/OP swab samples; otherwise, we need to conduct
more k1 + 1 rRT-PCR tests to locate one positive sample
from the remaining 2k1+1 NP/OP swab samples. Since the
NP/OP swab samples are randomly permutated, the average
number of rRT-PCR tests to locate one infected NP/OP swab
samples from s j p = 2k1 + 2k1+1 samples is 1

3 (1+ 1+ k1) +
2
3 (1+ 1+ k1 + 1) = k1 + 3. Similarly, we can conclude that
the average number of rRT-PCR tests to locate one infected
NP/OP swab samples from sdb = 2k1+1 + 2k1+1 samples is
1
2 (1+ 1+ k1 + 1)+ 1

2 (1+ 1+ k1 + 1) = k1 + 3.
For achieving a minimum average number of rRT-PCR tests,

we can only apply the group testing strategy when its average

number of rRT-PCR tests to locate one positive sample is less
than that of the individual testing, i.e.,

k1 + 3 =
⌊

log2
1

3
smax

⌋
+ 3 � 1

ỹ
. (6)

Assume that |W | is large enough such that smax =
min

{
smsc,

⌊
1
ỹ

⌋
, |W |

}
= min

{
smsc,

⌊
1
ỹ

⌋}
. Case A: smsc �⌊

1
ỹ

⌋
. Obviously, in this case, we have smax = smsc,

which means that the Inequality (6) can be transformed as⌊
log2

1
3 smsc

⌋ + 3 � 1
ỹ . Thus, we can derive ỹ � 1�log2

1
3 smsc�+3

.
This means that: (1) when smsc = 1, we have ỹ � 1; (2) when
smsc = 2, we have ỹ � 1

2 ; (3) when smsc � 3, we have ỹ � 1
3 .

Case B: smsc >
⌊

1
ỹ

⌋
. In this case, we have smax =

⌊
1
ỹ

⌋
, and

Inequality (6) can be transformed as
⌊

log2
1
3

⌊
1
ỹ

⌋⌋
+ 3 � 1

ỹ ,

from which we can derive ỹ � 1
3 . As discussed early, when

y � y0, the AdaGT algorithm applies the group testing. Thus,
combining Case A and Case B, we should choose y0 = 1

3 such
that the choice between the group testing and the individual
testing can always lead to the minimum average number of
rRT-PCR tests for identifying a positive sample, regardless of
the ratio of positive samples. This completes the proof. �

VI. EXPERIMENTS

In this section, we report the results of experiments, con-
ducted in Python 3.8.3 on an integrated development environ-
ment platform - Jupyter Notebook 6.0.3. Note that each piece
of data in the following figures is averaged over 50 times of
repeated experiments.

A. Impacts of False Negative and False Positive
As discussed in subsection IV-B, the summation of the

false-negative rate and the sensitivity (i.e., the true positive
rate) is 1. Thus, the problem of investigating the impacts of
false negative can be transformed into the problem of how
the sensitivity of rRT-PCR tests impacts the performance of
the proposed AdaGT algorithm. As discussed in Section I,
mixing samples usually leads to substantial dilution of viral
RNA in the grouped samples; and on the whole, the sensitivity
of the rRT-PCR tests (i.e., f (s)) monotonically decreases with
the group sizes size s [16], [27], [28]. Note that the specific
form of f (s) is not the scope of this paper. In the experiments,
without loss of generality and easy implementation, we simply
assume a linear relationship between the group size and the
sensitivity. Specifically, in Fig. 4, for investigating the impacts
of sensitivity on experimental results, we assume the following
three relationships between the group size and the sensitivity:

f1(s) =
{
− 1

400 s + 1; ∀s � 16, s ∈ N+

− 3
800 s + 1.02; ∀s > 16, s ∈ N+,

(7)

f2(s) = − 1

320
s + 1, (8)

and

f3(s) = − 1

640
s + 1. (9)

We show curves of f1(s), f2(s) and f3(s) in Fig. 3.
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Fig. 3. Three linear relationships between the group size and the sensitivity.

The above Equation (7) is consistent with the observations
in [27], introduced in Section II. In the following, if not
otherwise specified, we assume f (s) = f1(s).

In Fig. 4, we assume that there are a total number of
10,000 NP/OP swab samples to be tested. We set α0 = 0.9 and
y0 = 0.33. As mentioned in Section IV-B, the specificity of
an rRT-PCR test (i.e., h(s)) is the probability that a negative
rRT-PCR test probing s samples correctly returns a negative
result, and h(s) does not change with the group size s. In the
following, if not otherwise specified, we assume that the
probability that a negative rRT-PCR test mistakenly returns a
positive result is ε1 = 0.004 due to reasons such as inadequate
laboratory rRT-PCR tests. That is to say, in Fig. 4, we assume
h(s) = 1− ε1 = 0.096.

As shown in the left of Fig. 4(a), when the ratio of positive
samples y ranges from 0.005 to 0.1, the average numbers
of rRT-PCR tests under relationships f1(s) and f2(s) almost
coincide. This is mainly due to the following reasons: (a) when
α0 = 0.9, the values of smsc under both relationships f1(s) and
f2(s) are equal to 32; (b) when 0 < y ≤ 0.03, we have sops =
� 1

y � ≥ � 1
0.03� = 33 > 32; thus, according to Equation (5), we

can know that when 0 < y ≤ 0.03, we have smax = smsc = 32;
(c) similarly, we can infer that when 0.03 < y ≤ 0.1, we have
smax = sops . Combining (b) and (c), we can know that when
y < 0.1, the values of smax under relationships f1(s) and
f2(s) are equal, resulting in an almost equal average number
of rRT-PCR tests.

We can also infer that when y ≤ 0.015, we have smax =
64 under the relationship f3(s). It is larger than the value of
smax under relationships f1(s) and f2(s) (i.e., 32). This leads
that the average number of rRT-PCR tests under relationship
f3(s) is slightly smaller than those under relationships f1(s)
and f2(s), as shown in the right of Fig. 4(a). When y ≥ 0.021,
we have sops = � 1

y � ≤ � 1
0.021� = 47. As aforementioned, the

group size s is of the same form as in the jumping/doubling
strategy. Thus, when 0.021 ≤ y ≤ 0.03, we can choose
the group size s to be at most 32 under relationships f1(s),
f2(s), and f3(s). As shown in Fig. 3, when s = 32, the
probability that an rRT-PCR test correctly returns a positive
result under relationship f3(s) is much higher than those under
relationships f1(s) and f2(s). This implies that more positive
results will be returned under relationship f3(s). Thus, when
0.021 ≤ y ≤ 0.03, the average number of rRT-PCR tests
under relationship f3(s) is slightly more than those under
relationships f1(s) and f2(s), as shown in the right of Fig. 4(a).

In overall settings, the sensitivity is calculated as the ratio
of the number of positive samples correctly identified to the

total number of positive samples. As shown in Fig. 4(b),
for a given ratio of positive samples, the sensitivity usually
achieves the highest value under relationship f3(s), followed
by relationship f1(s), and achieves the lowest value under rela-
tionship f2(s), which is consistent with Fig. 3. For any given
relationship among f1(s), f2(s), and f3(s), the sensitivity has
a tendency to increase with the ratio of positive samples.

In overall settings, the specificity is calculated as the ratio of
the number of negative samples correctly identified to the total
number of negative samples. As shown in Fig. 4(c), for any
of the above three relationships, the specificity is very high.
Specifically, it is larger than 99.8%. For any given relationship
among f1(s), f2(s), and f3(s), the specificity has a tendency
to decline with the ratio of positive samples.

We next investigate the impacts of false positive. As afore-
mentioned, we use ε1 to denote the probability that an
rRT-PCR test mistakenly returns a positive result. Thus,
in Fig. 5, we investigate the performance of the AdaGT
algorithm when the value of ε1 increases from 0.002 to 0.02.
We set α0 = 0.9 and y0 = 0.33. As shown in Fig. 5(a), with
ε1 increasing, the average number of rRT-PCR tests increases
slowly, regardless of the value of the ratio of positive samples
y. In Fig. 5(b), we can observe that for any given y, with ε1

increasing, the sensitivity tends to decline. For any given ε1,
the AdaGT algorithm usually achieves the highest sensitivity
under y = 0.04, followed by y = 0.03, and achieves the lowest
sensitivity under y = 0.02. In Fig. 5(c), we can observe that for
any given y, with ε1 increasing, the specificity tends to decline.
As shown in Fig. 5(c), the AdaGT algorithm usually achieves
the highest specificity under y = 0.02. When ε1 < 0.06, the
specificity under y = 0.04 is larger than that under y = 0.03;
and vice versa, when ε1 > 0.06.

B. Selection of Parameters α0 and y0

As defined earlier in subsection IV-B, the parameter α0 is
a pre-determined threshold that the sensitivity of rRT-PCR
tests should not be less than it. In Fig. 6, we investigate
how different values of parameter α0 impact the performance
of the AdaGT algorithm in terms of the average number of
rRT-PCR tests and the sensitivity. We assume that there are
a total number of 10,000 NP/OP swab samples to be tested.
Although in the real world, the value of α0 can be set by
medical professionals as any value between 0 and 1, in our
experiments, without loss of generality, we set α0 as 0.9 and
0.95, respectively. The ratio of positive samples, denoted by
y, ranges from 0.005 to 0.07. As indicated in Theorem 4, the
AdaGT algorithm achieves the minimum average number of
rRT-PCR tests when y0 = 1

3 . Thus, in Fig. 6, the threshold for
the estimated ratio of positive samples, i.e., y0, is set as 0.33.

According to Equations (3) and (7), in the case α0 = 0.95,
we have smsc = 18; and in the case α0 = 0.9, we have
smsc = 32. Thus, when y < 0.03, in both of the above cases,
we usually have sops > smsc. According to the analysis in
Subsection IV-C, when sops > smsc, it is smsc that determines
the maximum group size in the group testing strategy. Since
smsc in the case α0 = 0.9 is greater than smsc in the case
α0 = 0.95, we can infer that the maximum group size in the
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Fig. 4. Experiment results under three different relationships f1(s), f2(s), and f3(s) when the ratio of positive samples ranges from 0.005 to 0.1.

Fig. 5. Experiment results under the relationship f1(s) when ε1 ranges
from 0.002 to 0.02. Note that ε1 denotes the probability that an rRT-PCR test
mistakenly returns a positive result.

case α0 = 0.9 is greater than that in the case α0 = 0.95.
When 0.03 < y < 0.05, in the case α0 = 0.95 we usually
have sops > smsc = 18, which means the maximum group size
is less than 18. In contrast, in the case α0 = 0.9 we usually
have 20 < sops < smsc = 32, which means that the maximum
group size is larger than 20. Thus, when 0.03 < y < 0.05, the
maximum group size in the case α0 = 0.9 is larger than that in
the case α0 = 0.95. Since a larger maximum group size, on the
whole, implies more samples examined in an rRT-PCR test,
we can derive that when y < 0.05, on the whole, an rRT-PCR
test examines more NP/OP samples in the case α0 = 0.9 than
in the case α0 = 0.95. Thus, when y < 0.05, fewer rRT-
PCR tests are conducted in the case α0 = 0.9 than in the
case α0 = 0.95. The above analysis is validated in Fig. 6(a).
As can be seen, when y < 0.05, the average number of rRT-
PCR tests in the case α0 = 0.95 is larger than that in the case
α0 = 0.9. Furthermore, with the increase of y, the difference
between the average rRT-PCR tests in these two cases gets
smaller constantly.

When y > 0.05, in both of the above cases, we have
sops < smsc, which implies that in both cases, it is the estimated
ratio of positive samples that determines the maximum group
size. For a given y, its estimated value is not impacted by
values of α0. Thus, for a given ratio of positive samples,
the maximum group size in both of the above two cases is

Fig. 6. Experiment results under different values of α0: (a) average number
of rRT-PCR tests; (b) sensitivity.

almost the same. This implies that the average number of rRT-
PCR tests conducted in both of the above two cases is almost
the same. The above analysis is also validated in Fig. 6(a).
As can be seen, when y > 0.05, the two curves of the average
numbers of rRT-PCR tests under the above two cases almost
coincide with each other.

In Fig. 6(b), we have the following observations: when
y < 0.05, the sensitivity in the case α0 = 0.9 is less than that
in the case α0 = 0.95. Besides, with the increase of the ratio of
positive samples, the gap between values of sensitivity in the
above two cases narrows, and finally, the two curves almost
overlap with each other. The reason behind this phenomenon
is analyzed as follows: (1) As discussed early, when y < 0.05,
on the whole, an rRT-PCR test examines more NP/OP samples
in the case α0 = 0.9 than in the case α0 = 0.95; (2) The sensi-
tivity of the rRT-PCR tests is seriously impacted by the dilution
effect. In other words, when a positive sample is diluted
in a group of negative samples, the sensitivity of rRT-PCR
tests lowers substantially. (3) On the whole, more rRT-PCR
tests intuitively imply smaller sensitivity. Nevertheless, in the
experiments, the differences between rRT-PCR tests in the case
α0 = 0.9 and α0 = 0.95 are not large enough to compensate
for the dilution effect of the group size. Note that if it is not
otherwise stated in the following, we set α0 = 0.9.
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Fig. 7. Experiment results under different values of y0 in terms of the average
number of rRT-PCR tests.

Fig. 8. Experiment results regarding how the value of ỹ changes during the
screening process.

In Fig. 7, we investigate how different values of parameter
y0 impact the performance of the AdaGT algorithm in terms of
the average number of rRT-PCR tests. We also assume that the
total number of NP/OP swab samples to be tested is 10,000,
i.e., n = 10, 000. As shown, for any given y0, when the ratio
of positive samples does not exceed y0, the average number
of rRT-PCR tests increases monotonically. Particularly, when
y0 � 0.33, the average number of rRT-PCR tests first grows
with the increase of the ratio of positive samples and then
remains stable. When y0 > 0.33, the average number of rRT-
PCR tests first increases to a number larger than 10, 000 and
then declines to 10, 000. Regardless of the ratio of positive
samples, the average number of rRT-PCR tests achieves the
minimum in the case y0 = 0.33. This validates Theorem 4.
In the following, if it is not other stated, we set y0 = 0.33.

C. Estimation Accuracy of y

In Fig. 8 and Fig. 9, we investigate the following two issues,
respectively: (1) how does the estimation accuracy of y change
during the screening process? (2) how does the estimation
accuracy of y impact the performance of the proposed AdaGT
algorithm in terms of the average number of rRT-PCR tests.
In the experiments, we set α0 = 0.9, y0 = 0.33, and ε1 = 0.04.

In Fig. 8, we consider four cases where the ratio of positive
samples (i.e., y) is assumed to be 0.05, 0.1, 0.2, and 0.4,
respectively. As shown in the figure, in all of the above
cases, as the screening process proceeds, the bias between
ỹ and y tends to become smaller. The reasons behind this
phenomenon are analyzed as follows: (1) When the screening
process begins, the estimation accuracy is low due to the

Fig. 9. Experiment results regarding how estimation accuracy of y impacts
the performance of the proposed AdaGT algorithm in terms of the average
number of rRT-PCR tests.

Fig. 10. Experiment results under m = 0.

limited information. (2) With more and more rRT-PCR tests
being performed, the knowledge about negative or positive
samples increases, leading to an improvement in the estimation
accuracy.

In Fig. 9, we assume that the ratio of positive samples is
0.1. For investigating how estimation accuracy of y impacts
the performance of the proposed AdaGT algorithm in terms of
the average number of rRT-PCR tests, we consider three cases
where ỹ is estimated to be valued in the intervals (0.06, 0.08),
(0.09, 0.11), and (0.12, 0.14), respectively, during the screen-
ing process. As shown in the figure, with the total number of
samples to be tested ranging from 500 to 10500, the average
number of rRT-PCR tests does not differ much in the above
three cases. To conclude, although the estimation accuracy of
y is low at the beginning of the screening process, this does not
deteriorate the screening efficiency. Thus, it is reasonable to
use the estimated ỹ at the beginning of the screening process,
and it is not necessary to use the estimated ỹ after enough
rRT-PCR tests have been done.

D. Bounds of Number of rRT-PCR Tests

In Fig. 10, we investigate how the average number of
rRT-PCR tests changes when there are no positive samples
among a total number of n samples. As shown, with n
ranging from 1000 to 11000, the average number of rRT-PCR
tests increases monotonically. However, it is always between
the theoretical lower bound, and upper bound given out in
Theorem 1. This validates Theorem 1.

In Fig. 11, we investigate how the average number of rRT-
PCR tests changes when the ratio of positive samples is 0.1,
0.2, and 0.4, respectively. The theoretical upper bounds in
Fig. 11(a) and Fig. 11(b) are calculated based upon The-
orem 2, and the theoretical upper bound in Fig, 11(c) is
calculated based upon Theorem 3. As shown, in all of the
above three cases, with n ranging from 1000 to 11000, the
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Fig. 11. Experiment results: (a) m = 0.1n; (b) m = 0.2n; (c) m = 0.4n.

average number of rRT-PCR tests increases monotonically.
Still, it never exceeds the theoretical upper bounds given out
in Theorem 2 or Theorem 3. This validates the correctness of
Theorem 2 and Theorem 3.

E. Comparison With Existing Schemes

In this subsection, we assume that there are a total number
of 10,000 Np/OP samples to be tested. We compare the
proposed AdaGT algorithm with the following group testing
methods against COVID-19 in [23], [24]: (1) The BT32
method means the binary testing protocol in [23], by which at
the first rRT-PCR test, a group of 32 samples is mixed together
to be examined. If the result of an rRT-PCR test is negative,
then all samples being tested are clear; otherwise, half of
these samples are further tested in the next rRT-PCR test.
(2) Both of the P9S3 and P4S2 methods are multi-stage group
testing methods in [24]: (2a) Specifically, the P9S3 method
is performed with three stages as follows: At the first stage,
the NP/OP samples are divided into groups of 9 samples. For
the tested positive groups at the first stage, their elements are
further divided into groups of 3 samples at the second stage.
For the groups that tested positive at the second stage, their
elements are tested individually at the third stage. (2b) The
P4S2 method is performed with two stages as follows: At
the first stage, the NP/OP samples are divided into groups
of 4 samples. For the groups which are tested positive, their
elements are further tested individually at the second stage.

In Fig. 12, the ratio of positive samples ranges from 0.005 to
0.1. Particularly, for the AdaGT algorithm, we consider the

following two cases α0 = 0.9 and α0 = 0.95. As shown
at the left-side of Fig. 13(a), with the increasing ratio of
positive samples, the average numbers of the rRT-PCR tests
of the AdaGT, the BT32, the P9S3, and the P4S2 methods
in [23] increase monotonically. As shown at the right-side of
Fig. 13(a), when the ratio of positive samples is less than
0.05, both the AdaGT (α0 = 0.9) and the BT32 algorithms
achieve the minimum average number of the rRT-PCR tests,
followed by the AdaGT (α0 = 0.95). In contrast, on average,
the P9S3 and the P4S2 algorithms conduct much more rRT-
PCR tests than the proposed AdaGT algorithm with both
α0 = 0.9 and α0 = 0.95. As shown at the right-side of
Fig. 13(a), when the ratio of positive samples is larger than
0.05, the AdaGT algorithm conducts the fewest rRT-PCR tests.
From the above observations, we can conclude that when
the ratio of positive samples ranges from 0.005 to 0.1, the
proposed AdaGT algorithm outperforms the P9S3, the P4S2,
and the BT32 methods in terms of screening efficiency.

In Fig. 12(b), we have the following observations: (1) The
P4S2 method achieves the greatest sensitivity, followed by
the P9S3 method. (2) When the ratio of positive samples
is less than 0.035, the AdaGT (α0 = 0.9) and the BT32
methods have comparable sensitivity. (3) When the ratio of
positive samples is larger than 0.035, the sensitivity of the
AdaGT method (α0 = 0.9) increases quickly. When the ratio
of positive samples is larger than 0.07, the AdaGT method
has a comparable sensitivity with the P9S3 method. When
α0 is set as 0.9, the lowest sensitivity of the proposed AdaGT
algorithm is about 0.87. In contrast, when α0 is set as 0.95,
the lowest sensitivity of the proposed AdaGT algorithm is
about 0.94. This implies that we can control the sensitivity
of the proposed AdaGT algorithm by adjusting the value of
α0. Particularly, when α0 is set as 0.95, the sensitivity of the
proposed AdaGT algorithm is distributed between 0.94 and
0.97, which is comparable to those of the P9S3 and the P4S2
algorithms.

In Fig. 12(c), we investigate how the specificity of all
rRT-PCR tests changes with the ratio of positive samples.
As shown in Fig. 12, for a given ratio of positive samples,
the specificity values of the P9S3 and P4S2 methods are
much higher than those of the AdaGT and BT32 methods.
This is mainly because the P9S3 and P4S2 methods do not
infer samples’ states (“positive” or “negative”) through other
samples’ states, whereas both the AdaGT and BT32 methods
indeed do this. In addition, for any given method among the
above four methods, as the ratio of positive samples increases,
the specificity value tends to decrease monotonically. On the
whole, the specificity values of all the above algorithms are
very high.

For better understanding, in Fig. 13, we compare the pro-
posed AdaGT algorithm with the BT32, the P9S3, and the
P4S2 algorithms when the ratio of positive samples ranges
from 0.05 to 0.9. From the above analysis, we know that
when the ratio of positive samples is larger than 0.05, the
curves of the average number of rRT-PCR tests conducted by
the AdaGT algorithm under α0 = 0.9 and α0 = 0.95 coincide
with each other. Thus, in Fig. 13, we only consider the case
α0 = 0.9. As shown in Fig. 13(a), with the increasing of the
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Fig. 12. Comparing the AdaGT algorithm with existing group testing methods against COVID-19 when the ratio of positive samples ranges
from 0.005 to 0.1.

Fig. 13. Comparing the AdaGT algorithm with existing group testing methods against COVID-19 when the ratio of positive samples ranges
from 0.05 to 0.9.

ratio of positive samples, the average number of rRT-PCR tests
of the BT32 method in [23] increases linearly. For P9S3 and
P4S2 methods in [24], the average number of rRT-PCR tests
increases quickly at first; when the ratio of positive samples
is larger than about 0.3, the increasing speed decreases. For
the proposed AdaGT method, the average number of rRT-
PCR tests increases monotonically at first; when the ratio of
positive samples is larger than 0.35, the average number of
rRT-PCR tests remains constant. Regardless of the ratio of
positive samples, the AdaGT algorithm always takes the fewest
rRT-PCR tests to screen out all positive samples.

In Fig. 13(b), we have the following observations: (1) With
the ratio of positive samples increasing from 0.05 to 0.9, the
sensitivity of the BT32 methods remains around 0.87 The
sensitivity of the BT32 methods is always less than that
of the AdaGT, the P9S3, and the P4S2 methods. (2) The
sensitivity of the P9S3 and P4S2 methods in [24] increases
slightly. (3) As for the AdaGT method, with the increase of
the ratio of positive samples, the sensitivity first increases
quickly and then remains almost constant. (4) When the ratio
of positive samples is less than 0.1, the sensitivity of the
AdaGT algorithm is less than that of the P9S3 and P4S2

methods. (5) When the ratio of positive samples is greater than
0.1, the sensitivity of the AdaGT algorithm is comparable or
higher than that of the P9S3 and P4S2 methods.

In Fig. 13(c), We compare the specificity value of the
proposed AdaGT algorithm with those of the P9S3, the P2S4,
and the BT32 methods. As shown in the figure, with the
increase of the ratio of positive samples, the specificity values
of the above four methods tend to decreases monotonically
and quickly. Particularly, after the ratio of positive samples
increases to 0.35 or more, the specificity value of the AdaGT
algorithm remains constant at 99.6%. Although the specificity
values of the P9S3 and the P4S2 methods are a little bit higher
than those of the proposed AdaGT and the BT32 methods, on
the whole, the specificity values of the above four methods
are very high.

Based upon the statistics released in [4], the ratio of
confirmed COVID-19 cases to the total population of the
world is about 0.02. However, this ratio varies among different
countries. For example, the ratio of confirmed COVID-19
cases to the total population of the USA is about 0.1. We can
easily infer that in some areas of the USA, this ratio is above
0.1, while in other areas of the USA, this ratio is below 0.1.
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The AdaGT algorithm is practically useful, as analyzed in the
following:
• As discussed above, regardless of the ratio of positive

samples, the AdaGT algorithm can always perform fewer
rRT-PCR tests to screen all positive samples than existing
methods like the BT32, the P9S3, and the P4S2. In other
words, regardless of the positive sample ratios, the screen-
ing efficiency of the AdaGT algorithm outperforms those
of those methods.

• The AdaGT algorithm usually has higher sensitivity than
the BT32 method. When the ratio of positive samples is
below 0.1, by controlling the value of α0, the proposed
AdaGT algorithm can achieve comparable sensitivity with
the P9S3 and the P4S2 methods. When the positive
sample ratio is above 0.1, the AdaGT algorithm has
comparable or even higher sensitivity with the P9S3 and
the P4S2 methods.

• The specificity of the AdaGT method is very high.

VII. CONCLUSION

In this paper, we aim to screen the SARS-CoV-2 virus
with as few rRT-PCR tests as possible, under the premise
that the sensitivity of rRT-PCR tests is larger than a predeter-
mined threshold. To achieve this goal, we propose the AdaGT
algorithm. Based upon some information collected during the
testing process, the AdaGT algorithm can estimate the ratio of
positive samples during the screening process. If this estimated
ratio is larger than a user-specified threshold, an individual
testing strategy is applied to test the NP/OP swab samples
separately. Otherwise, the group testing strategy is employed
to test a group of NP/OP swab samples. In this case, the group
size is carefully selected to guarantee that the sensitivity of
the rRT-PCR test is higher than a predetermined threshold
and that, on average, there is at most one positive sample
in this group. If there are positive samples among this group,
a binary testing strategy is further employed to identify one
positive sample from these samples. We analyze the theoretical
bounds of the number of rRT-PCR tests, and the theoretical
performance analysis also indicates that when y0 = 1

3 , the
AdaGT algorithm can achieve a minimum average number
of rRT-PCR tests. Experimental results show that the AdaGT
algorithm outperforms existing group testing methods against
COVID-19 efficiency and sensitivity.

As our future work with potential funding, we hope to
cooperate with some hospitals to validate our model with real
testing data to justify its advantages.
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