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ABSTRACT State estimation plays a vital role to ensure safe and reliable operations in smart grid. Intelligent
attackers can carefully design a destructive and stealthy false data injection attack (FDIA) sequence such
that commonly used weighted least squares estimator combined with residual-based detection method is
vulnerable to the FDIA. To effectively defend against an FDIA, in this paper, we propose a robust deviation-
based detection method, in which an additional Kalman filter is introduced while retaining the original
weighted least squares estimator, so that there are two state estimators. Moreover, an exponential weighting
function is also applied to the introduced Kalman filter in our proposed method. When an FDIA occurs,
the estimation results of weighted least squares estimator depend only on meter measurements at each time
slot, but there is an adjustment process of estimated states for the Kalman filter based on historical states’
transitions.Meanwhile, based on the exponential weighting function, estimatedmeasurements in the Kalman
filter can be adaptively suppressed for different attack strengths of FDIAs, and then the difference of the
results of these two estimators increases. Subsequently, FDIAs can be effectively detected by checking the
deviation of estimated measurements about the two estimators with a detection threshold. Experimental
results validate the effectiveness of the proposed detection method against FDIAs. The impact of different
attack strengths and noise on detection performance is also evaluated and analyzed.

INDEX TERMS State estimation, false data injection attacks, smart grid, cyber security, Kalman filter, cyber
physical system.

I. INTRODUCTION
Smart grid is a typical Cyber-Physical Systems (CPS) which
combines the physical world and the cyber world via seam-
less integration of sensing, communication, computation,
and control. Compared to traditional power systems, smart
grid generates a large amount of data due to the continuous
two-way information interaction, demand response applica-
tions [1], etc. Bidirectional information exchange among cus-
tomers, operators, and control devices provides an efficient
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way of energy supplying and consumption [2]. However,
the strong coupling between cyber and physical operations
also makes smart grid vulnerable to various malicious cyber
attacks [3]. During data transmission process of power emer-
gency control services, rapid response demands cause a lack
of encryption and detection ability in smart measurement
devices [4]. Successful cyber attacks may cause regional
blackouts, significant financial losses, and even endangering
of human lives. For instance, on 23Dec. 2015, a synchronized
and coordinated cyber attack compromised three Ukrainian
regional electric power distribution companies, resulting in
power outages affecting approximately 225,000 customers
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FIGURE 1. The vulnerabilities of the smart grid under the occurrence of
FDIAs.

for several hours [6]. Also, it has been reported that there are
about 2000 premeditated attacks on provincial power utilities
in China every month [4].

FDIAs in smart grid target to state estimation. The accurate
state estimation obtained from state estimators plays a vital
role for the purpose of establishing the basis for subsequent
controls and analysis. The real-time monitoring of smart
grid is of critical importance to guarantee steady and secure
operations. As shown in Fig. 1, remote terminal units such
as smart meters, smart sensors, or actuators are used through
the communication networks to monitor real-time measure-
ments. The state estimator in the control center then uses these
received redundant readings from supervisory control and
data acquisition (SCADA) system and other available infor-
mation such as topology information to estimate the electrical
states. The electrical states are usually voltage amplitudes and
voltage phase angles. These critical parameters must be accu-
rately estimated in energy management system so that other
applications such as optimal power flow analysis, automatic
generation control, economic dispatch, and contingency anal-
ysis can be controlled. All these decisions in the control center
are used to ensure the balance of power supply and demand
in smart grid. The FDIAs can be launched through hack-
ing some smart meters and sensors, interfering communica-
tion links, or damaging the database and the control center
directly [5].

The widely used static state estimation in smart grid is
based on the weighted least squares estimation method.
A detector, either the `2-norm measurement residual-based
J (x) detector or the largest normalized residual-based (LNR)
detector, can effectively detect bad data which is caused
by random noise [8]. It has been shown that FDIAs can
circumvent conventional normalized measurement residual-
based bad data detection and can insert any bias into the
value of estimated states stealthily [9], [10]. Recently, the
possible false data injection attacks have also been considered
in dynamic systems, especially in stochastic systems. In [11],
a new necessary and sufficient condition for the insecurity
is derived in the case that all communication channels are

compromised by an adversary. In [7] and [12], an optimal lin-
ear deception attack strategy is proposed to successfully inject
false data without being detected and the FDIA for cyber-
physical system with resource constraint is also considered.

In response to FDIAs, defense mechanisms are either to
protect the smart grid from attackers in advance or to detect
and identify FDIAs during the process of state estimation.
From the perspective of protection-based defense, FDIAs
can be defended by protecting some strategically selected
meter measurements such that these protected measurements
cannot be tampered by attackers anymore. Another way of
protection is to deploy advanced measurement units, such
as phasor measurement units (PMUs). Since PMUs have the
capability of providing accurate synchronous phasor mea-
surements for geographically dispersed nodes in power grids
by synchronizing to the global positioning system (GPS),
PMUs are typically robust against data injection attacks and
have measurements secured [13]. However, the deployment
cost in this way is very high. Moreover, the protection-based
defend methods are only applicable to power systems with
specific topologies and they are unavailable to changing grid
topologies.

Commonly used `2-norm-based measurement residual
detection methods based on static state estimation have been
verified to have good performance in dealing with bad data
except for FDIAs [23]. For the real-time detection and identi-
fication of FDIAs in smart grid, adopting a state-space model
enables a dynamic state estimator to combine present and
past measurements so that the system state can be inferred
in an accurate and robust way [25]. In [26], a cosine sim-
ilarity matching approach is proposed to detect FDIAs by
comparing estimated state values of a Kalman filter and
measurements from PMUs. The authors in [27] present a
Euclidean detector to determine the difference between the
estimated measurements and the actual measurements. These
actual measurements are usually obtained from smart sen-
sors. However, these measurement residual-based detection
methods [26], [27] generally rely on trustworthy and reliable
measurements from advanced measurement devices such as
PMUs. Tomanage and utilize large, high-density data streams
with nanosecond time stamping of PMUs is a challenging
task [35].

Based on above mentioned issues, the main motivations
of this paper are illustrated as follows. Under normal oper-
ations of smart grid, fast dynamics of power systems can be
well damped and sudden load changes are infrequent so that
system states change gradually over time. Moreover, since
loads in smart grid vary according to the temperature and
weather, there exists temporal correlation of system states
with the evolution of system changes. Based on historical
state variables’ transitions, bad effects of attacks can be intro-
duced to these estimated state variables in a Kalman filter [28]
when compared with the case that under normal condition.
While the state estimation result of the original weighted
least squares estimator under attacks is realtime at each time
slot, if we introduce an additional estimator of a Kalman
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filter based on the state-space model, it enables the FDIAs’
detection by considering the difference of estimation results
about the two estimators. Instead of hardware deployment
with expensive PMUs equipment, we are concentrating on
solving the problem of FDIAs detection only through the
software implementation of the proposed effective detection
method. Therefore, in this paper, we propose a deviation-
based detection method against FDIAs by adopting an addi-
tional estimator of Kalman filter, which can conduct dynamic
state estimation based on historical states’ transition. There
is an adjustment process of estimated states in the Kalman
filter when FDIAs occur, while the estimation result of the
weighted least squares estimator to FDIAs is realtime. With
the weighted least square estimator, the discrepancy between
estimation results of these two estimators allows FDIAs to
be effectively detected. Moreover, the exponential weighting
function is applied to enhance the robustness of the intro-
duced additional Kalman filter. Therefore, the difference of
the two estimators increases because the impact of estimation
performance in the Kalman filter under attacks is mitigated.
The main contributions of this paper are summarized as
follows:

• A low-cost deviation-based detection method against
FDIAs is firstly proposed considering the integration of
an additional Kalman filter.

• An robust strategy using exponential weighting func-
tion is applied to enhance the robustness of introduced
additional Kalman filter such that the detection perfor-
mance of our proposed detection method is effectively
improved.

• The proposed deviation-based detection method has
strong scalability. It can also detect other types of attack
scenarios, such as step attacks and random attacks.

• The reliable response and efficiency of the pro-
posed detection method against FDIAs is demonstrated
through experiments. The impact of different attack
strengths and noise to the detection performance is also
evaluated and analyzed.

The rest of the paper is organized as follows. Related
works about defense methods against FDIAs are presented in
Section II. Section III presents the model of system frame-
work and FDIAs. In Section IV, the impact of FDIAs on
estimation performance target to the Kalman filter is ana-
lyzed and the deviation-based detection method is proposed.
Section V provides experiments and performance evaluation
results. Finally, we conclude this paper with some future
research directions in Section VI. Nomenclature of the paper
is given in Table 1.

II. RELATED WORKS
For the protection-based defense, the authors in [12] propose
that FDIAs can be defended by protecting a set of strategically
selected measurements. A greedy strategy-based method is
presented in [14] to find the minimum measurements set that
need to be protected. Moreover, since phasor measurement

TABLE 1. Nomenclature.

units (PMUs) have the capability of providing accurate syn-
chronous phasor measurements for geographically dispersed
nodes in power grids by synchronizing to the global position-
ing system (GPS), PMUs are typically robust against data
injection attacks and have measurements secured [13]. The
state information can be monitored directly by the placement
of PMUs. In [19], [20], low complexity secure PMU place-
ment algorithms are proposed based on a fast greedy strategy.
Amixed integer programmingmodel for optimal PMU place-
ment is developed to defend FDIAs in [21]. However, since
PMUs are expensive devices in practice, it is not feasible to
deploy enough PMUs to secure all the measurements. Hence,
deploying PMUs is more suitable for power systems that have
great social and economic impacts [20].

Due to insufficiency of the protection-based defense and
invalidation of traditional residual-based bad data detection
methods against FDIAs, real-time detection and identifica-
tion of such attacks are important to guarantee stable oper-
ations in smart grid. A generalized likelihood ratio test is
presented to detect weak FDIAs (the adversary controls only a
small number of meters and cannot perform the unobservable
attack) in [22]. By taking the power measurements of two
sequential data collection slots into account in short-term
sampling range, an FDIA together with some non-stealthy
attacks can be detected by monitoring the measurement vari-
ance and state changes. A state change vector, which can
be estimated from the measurement change vector, is com-
pared with a pre-defined threshold to detect FDIAs [13].
The authors in [23] propose a short-term state forecasting-
aided method to detect false data injection attacks based on
the fact that there exists temporal correlation between state
variables. An auto-regressive (AR)model is adopted to obtain
the forecasted measurements, and the normalized residual
between original received measurements and forecasted mea-
surements is used as an indicator of the detector. The authors
in [24] adopt an adaptive cumulative sum (CUSUM) based
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method to detect mean distribution change of the residual
vector under the occurrence of FDIAs, and the state esti-
mation is based on the conventional weighted least squares
method. Given corrupted measurements matrix under FDIAs,
the false data can be identified by performing low rank
and sparse decomposition in the robust principal component
analysis(RPCA) [14]. The authors in [15] propose to detect
FDIAs in realtime by utilizing load forecasts, generation
schedules, and synchrophasor data. These leveraged online
information is independent with traditional SCADAmeasure-
ments such that anomalies can be identified. Based on the
fact that normal measurements and attacked measurements
can be statistically distinguished, the authors in [16] adopt
a distributed support vector machine (SVM) algorithm for
training and principal component analysis (PCA) for feature
selection. The authors in [17] propose a detection mechanism
using a reinforcement learning algorithm and formulate the
stealthy FDIAs detection problem as a partially observable
Markov decision process. In [18], a data driven machine
learning based scheme, which employs ensemble learning,
is proposed to detect stealthy false data injection attacks on
state estimation. Both supervised and unsupervised classifi-
cation methods are used and decisions by individual classi-
fiers are further classified [18].

For the real-time detection of FDIAs by adopting state-
space models and dynamic state estimators, a diffusion strat-
egy based on distributed Kalman filters is proposed by using
the neighboring state information to form an optimal state
for every meter [29]. As for distributed quickest detection of
FDIAs, a CUSUM-based detection scheme is proposed [25].
The average false alarm rate of the CUSUM-based detec-
tion scheme is lower compared with the Euclidean detector
because there is an accumulation of change statistics.

III. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a steady-state and lossless power transmission
system with N buses and M meters, where M � N . The
steady-state of a power system is usually defined as an oper-
ating condition of a power system in which all the operating
quantities that characterize it can be considered to be constant
for the purpose of analysis. It is usually difficult for a control
center to directly obtain all state variables, such as phase
angles of all buses, by sensors in smart grid. Therefore,
state estimation plays an important role to estimate operation
states. Even though the relationship between state variables
and measurements in an actual power system is based on a
nonlinear function, due to simplicity and robustness of the
direct current (DC) model, a linear equation which compactly
associates the state variables and measurements is widely
used [10], [14], [19] as follows:

zk = Hxk + vk , (1)

where k ∈ N is the time index, zk ∈ RM is the vector of
measurements obtained from meters, xk ∈ RN is the vector
of system states (bus phase angles in the DC model), H ∈
RM×N is the measurement Jacobian matrix, and vk ∈ RM

is the zero-mean Gaussian white measurement noise with a
known error covariance matrix R, i.e., vk ∼ N (0, σ 2

v IM ),
where IM represents the M × M identity matrix. The target
of the attacker is to inject additive malicious data to a subset
of measurements by the ways shown is Fig. 1, such that
the measurement model under FDIAs can take the following
form:

zfk = Hxk + ak + vk , k ≥ k0 (2)

where ak = [a1,k , a2,k , . . . , aM ,k ]T is the injected false data
at time k , k0 represents the time that the attack is started to
be launched. Not all the meters can be compromised in smart
grid, such that if meter i ∈ [1,M ] is not under attack, we have
ai,k = 0; otherwise ai,k 6= 0 holds.
The state estimation and the formulation of false data

injection attacks in smart grid are stated as follows. The
widely used weighted least squares state estimation is for-
mulated as an optimization problem in which the weighted
least squares error is minimized to obtain the estimated state
variables. Suppose that the power system is under normal
operation condition, the optimal solution can be obtained
as x̂k = (HTR−1H)−1HTR−1zk in the DC model. Nat-
urally, the estimated measurement vector can be derived,
i.e., ẑk = H x̂k = H(HTR−1H)−1HTR−1zk . Intuitively,
measurements from normal meters usually produce state
variables that are close to the actual values. There exist
inconsistence between normal measurements and bad mea-
surements. The traditional bad data detection method is
usually based on the residual-based detector and then the
residuals between observed measurements zk and estimated
measurements ẑk are compared with predetermined detection
threshold τ . The residual is defined as rk = zk − ẑk =
zk − Hx̂k = (I − H(HTR−1H)−1HTR−1)zk . In order
to carry out the detection process, if the `2-norm of
residual rk is large than the predetermined threshold,
i.e., ||zk − Hx̂k ||2 > τ , there exists bad measure-
ments. On the contrary, if ||zk − Hx̂k ||2 ≤ τ ,
the measurement vector z is regarded as a normal one. The
predetermined threshold τ is usually obtained by the hypoth-
esis test problem of Pr(‖rk‖2 > τ ) = α for a given false
alarm probability α.
When attackers start to manipulate measurements, the esti-

mated state variables x̂fk under FDIAs can be represented as:

x̂fk = (HTR−1H)−1HTR−1(zk + ak )

= x̂k + (HTR−1H)−1HTR−1ak = x̂k + c, (3)

where c represents the introduced error to original state
variables and the dimension of c is the same as xk . The
measurement residual under the attacks then can be expressed
as follows:

rfk = ||z
f
k −Hx̂

f
k ||2 = ||zk + ak −H(x̂k + c)||2

= ||zk −Hx̂k + (ak −Hc)||2. (4)

Therefore, if original normal measurements can bypass the
measurement residual-based bad data detector and if the
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injected attack vector ak satisfies the condition ak = Hc, rfk =
||zfk − Hx̂fk ||2 ≤ τ holds. In other words, the compromised
measurements can also circumvent the detector. Attackers
need to obtain the Jacobian matrix H and have the capability
to modify some meters. To sum up, this carefully designed
FDIAs could inject any bias to the state estimation x̂k while
circumventing the alarm of the bad data detector in the control
center.

IV. PROPOSED DEVIATION-BASED DETECTION METRIC
As explained before, under normal operations of smart grid,
there exists temporal correlation of the system states since
loads are varying according to changes in weather and tem-
perature. On the other hand, the influence of introduced
attacks and disturbance can be propagated to future system
states through state’s transition. When attacks occur, the
deviation of estimated states will break down the tempo-
ral correlation, and launched attacks can be easily detected.
Therefore, besides the measurement equation, we further
introduce the state transition equation to construct the state
space model. Thus, a discrete-time linear time-invariant pro-
cess is considered:

xk+1 = Axk + wk , zk = Hxk + vk , (5)

where k ∈ N is the time index, xk ∈ RN and zk ∈ RM are the
vectors of system states and measurements, A ∈ RN×N is the
state transition matrix. Process noise wk ∈ RN and measure-
ment noise vk ∈ RM are assumed to be mutually uncorrelated
zero-mean Gaussian signals with known error covariance Q
and R, i.e., wk ∼ N (0, σ 2

wIN ), vk ∼ N (0, σ 2
v IM ), where

wk represents the external disturbance of dynamic systems.
The Kalman filter is known as an optimal linear estimator
which can minimize the mean-squared error and can provide
a recursive calculation of the state variables. The estimation
process are represented as follows:

x̂k|k−1 = Ax̂k−1, (6)

Pk|k−1 = APk−1AT + Q, (7)

Kk = Pk|k−1HT [HPk|k−1HT
+ R]−1, (8)

x̂k = Ax̂k−1 + Kk [zk −Hx̂k|k−1], (9)

Pk = [I − KkH]Pk|k−1, (10)

where x̂k|k−1 and x̂k are the priori and posteriori minimum
mean squared error estimates of state xk in the estimator,
Pk|k−1 and Pk are the corresponding priori and posteriori
state error covariances, Kk is the Kalman gain at time k . The
recursion starts from x̂0 = 0 and P0 = π0, where π0 is the
covariance matrix of the initial state x̂0.
Moreover, the innovation of Kalman filter is defined as

ξ k = zk −Hx̂k|k−1. The innovation has following properties:
(1) ξ k is zero-mean Gaussian; (2) ξ k and ξ j are independent,
∀j 6= k; (3) The covariance of ξ k satisfies E[ξ kξTk ] =
HPk|k−1HT

+ R, where E represents the expectation [31].
Assume that the power system is operating in normal con-

dition until FDIAs are launched at time k , from the estimation

process of Equations (6)-(10), attackers can only change the
measurement vector zk into z

f
k . Equation (9) becomes

x̂k = Ax̂k−1 + Kk [z
f
k −Hx̂k|k−1]

= Ax̂k−1 + Kk [zk + ak −Hx̂k|k−1]. (11)

The estimated states after FDIAs at time k can be represented
as x̂fk = x̂k + Kkak , where x̂

f
k is the estimated state vector

after attacks. We define the injected bias of estimated states
at time k as1x̂fk = x̂fk − x̂k . Then for the next time slot k+1,
there exists the following relationships:

x̂fk+1 = Ax̂fk + Kk+1[z
f
k+1 −HAx̂

f
k ]

= Ax̂fk + Kk+1[zk+1 + ak+1 −HAx̂
f
k ]

= x̂k+1 + [I − Kk+1H]A1x̂fk + Kk+1ak+1. (12)

Thus the injected bias of estimated states at time k + 1 is
1x̂fk+1 = x̂fk+1 − x̂k+1 = [I − Kk+1H]A1x̂fk + Kk+1ak+1.
Through the analysis mentioned above, we can see that

injected bias is affected by current injected false data and
the previous bias of estimated states. The injected bias to
the estimated states is gradually accumulated to the real sys-
tem states. Therefore, due to the adoption of state transition
equation, based on historical estimated states, there exists an
adjustment process of estimated states when FDIAs occur in
the Kalman filter. However, the response of weighted least
squares estimator to FDIAs is realtime at every current time
slot. While retaining the weighted least squares estimator,
the existence of discrepancy and inconsistency about the
response of two estimators allows FDIAs to be effectively
detected.

On the other hand, to mitigate the impact of injected bias
to the estimation performance in the Kalman filter [30], some
countermeasures can be applied to enhance the robustness.
From the measurement update step of Kalman filter, if the
Kalman gain can be adaptively reduced when the innovation
becomes large due to injection of FDIAs. Then the estima-
tion performance can be preserved to a certain extent, such
that the final estimation results will have a larger weight
on the results of prediction step. Inspired from [32], the
measurement weighting function W k , which is the inverse
of measurement noise covariance R, can be replaced by the
following equation:

(Wnew
k )−1 = (W k )−1 ∗ exp(

∣∣zk −Hx̂k|k−1∣∣). (13)

By this method, the influence leading to the deterioration
of estimation performance can be better suppressed. When
the predicted measurements and the received measurements
have a large deviation, the increase of absolute residual vector
makes measurement noise larger, leading to the decrease of
the Kalman gain. On the contrary, the measurement noise will
change a little if the deviation of predicted measurements and
received measurements is very small. Estimation results will
not be affected too much. At the same time, the robust state
estimation of the Kalman filter can improve the detection
capability of FDIAs because the estimated measurements of
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Algorithm 1 The Deviation-Based Detection Method
Require: State transition matrix A; noise error covariance

Q and R; initial state x̂0 and state error covariance P0;
predefined threshold τ ;

Ensure: Declare the occurrence of FDIA.
1: for k = 1 to N0, where N0 represents the number of time

slots do
2: Collect measurement vector zk from all meters and

identify measurement Jacobian matrix H ;
3: Traditional static state estimation using weighted least

squares method to compute estimated state vector x̂ks,
x̂ks = (HTR−1H)−1HTR−1zk ;

4: Compute estimated measurement vector ẑks, ẑks =
H x̂ks = H(HTR−1H)−1HTR−1zk ;

5: Implement the state prediction step of the Kalman
filter using Equations (6)-(7);

6: Update measurement noise covariance by the expo-
nential weighting function using Equation (13), where
R = (W k )−1;

7: Implement the measurement update step of Kalman
filter using Equations (8)-(10) to obtain estimated state
vector x̂kd , x̂kd = Ax̂k−1 + Kk [zk −Hx̂k|k−1];

8: Compute the estimated measurement vector ẑkd from
the Kalman filter, ẑkd = H x̂kd ;

9: Calculate deviations of the two estimated measure-
ment vectors as ek =

∣∣|ẑks − ẑkd ∣∣ |;
10: if ek is larger than τ then
11: Report FDIA and trigger an alarm;
12: else
13: Continue the state estimation process;
14: end if
15: end for

the enhanced Kalman filter is smaller than original results
leading the difference of responses of weighted least squares
estimator and the Kalman filter become apparent. The pro-
posed deviation-based detection metric targeted to FDIAs is
shown in Algorithm 1.
In the power grid, the state variables are usually voltage

values and phase angles of all buses. The phase angles usually
cannot be directly obtained. Since PMUs have the capability
to measure voltage angles, the cost for a large scale deploy-
ment of these advanced devices is very expensive. Therefore,
compared with these trustworthy measurements-based detec-
tion methods, our proposed detection method against FDIAs
is designed to be effective with a low cost.

V. EXPERIMENTS AND RESULTS
In this section, the effectiveness of our proposed method
against FDIAs is evaluated through experiments. Typically,
the variation of amplitude and phase always changes with an
attack or a fault in the power system [33]. Without loss of
generality, we adopt the sinusoidal wave model of power grid
voltage signal in which the basic simulation and experimental
settings are the same with [26], [27], [29] and the state

variables such as voltage magnitudes and angles are included.
The commonly used three-phase sinusoidal voltage signal
can usually be generalized to the power grid measurements
because the state variables are constrained by power flow
functions. Basically, we assume that the angular frequency
is relatively constant over time so that the amplitude and
phase are considered as state variables in the measurement
equation. Moreover, the voltage value can be measured real-
time by smart meters. In this paper, the measurement noise
for these meters is assumed to be normally distributed with
zero mean and variance 0.01. All experiments are conducted
using MATLAB with a computer of 3.2 GHz Intel Core i5
processor and 4GB memory on a Windows 7 system.

The power system is assumed to operate under normal con-
ditions and the sinusoidal voltage signal can be represented as
zk = Av cos(ωk+φ) = Av∗cosφ∗cosωk−Av∗sinφ∗sinωk ,
where Av is the amplitude, ω is the angular frequency, and φ
is the phase at discrete time k . Equivalently, the observation
equation of actual sinusoidal voltage signal can be rewritten
as: zk = [cosωk − sinωk][x1(k) x2(k)]T + vk , where
x1 = Av ∗ cosφ and x2 = Av ∗ sinφ are defined as state
variables, and they are integrated indicators about amplitude
and phase. As mentioned earlier, under normal operations
of smart grid, the system is assumed to be operated under
quasi static conditions, then fast dynamics of the system can
be well damped, and system states change gradually over
time. Thus the state transition matrix is diagonal and constant
[34]. On the other hand, due to loads in smart grid can vary
according to temperature and weather, there exists temporal
correlation of system states with the operation of the system.
Therefore, the system matrix is chosen to be an identity
matrix, and the state transition equation can be formulated as:
xk+1 = diag[1 1]xk + wk , where xk = [x1(k) x2(k)]T , and
wk is the process noise representing the disturbance input and
model error. Experimental parameters in our experiments are
set as follows: the sampling frequency is 2 kHz, the nominal
value of amplitude is 1 volt, the frequency is 50 Hz, the initial
state vector is x̂0 = 0, and the initial state covariance matrix
is P0 = I representing identity matrix. Moreover, based on
the analysis about stealthy condition of FDIAs in Section III,
the launched attack vector ak needs to satisfy ak = Hc at
each time slot k , where H represents the Jacobian matrix
and c is the injected bias to the state variables. Therefore,
attackers need to know the Jacobian matrix H and have the
capability to modify some meters. To launch FDIAs with
different attack strengths, we can obtain the injected attack
vector a by adjusting the value of injected bias c. Therefore,
measurement vectors under FDIAs can be obtained by the
normal measurements plus the injected attack vectors. The
carefully designed false data injection attacks are launched at
time 0.06s.

Next, we first verify that the traditional used weighted
least squares based estimator combined with the residual-
based detection mechanism fails to detect false data injection
attacks. Then, the detection performance of the proposed
deviation-based method against FDIAs is illustrated.
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FIGURE 2. (a) Observed measurements and estimated measurements by
the weighted least squares estimator under an FDIA. (b) Detection
performance of the traditional residual-based detector under an FDIA.

The influence of noise and strength of attacks towards the
detection performance are also discussed. Finally, we eval-
uate the detection performance of the proposed detection
method to other attacks, such as random attacks and step
attacks.

Based on aforementioned experimental setup, Fig. 2(a)
shows that estimated measurements based on the weighted
least squares estimator are almost the same with observed
meter measurements before the occurrence of the FDIA at
time 0.06s. The observed measurements refer to the val-
ues that can be directly measured by smart meters or smart
sensors. In our experiments, the observed measurements are
voltage amplitudes. In the second half of observation period,
since the carefully designed FDIA satisfies the stealthy condi-
tion, which is ak = Hc, whereH is themeasurement Jacobian
matrix, c is the bias that the attacker attempts to inject to
the state variables. We can see that the observed measure-
ments tampered by attackers are almost consistent with the
estimated measurements although the real measurements of
the power system are not changed. The injected bias to the
state variables is 0.5. Fig. 2(b) shows that the measurement
residual-based bad data detector cannot detect the launched
FDIA. The experiment results demonstrate that the FDIA can
inject any bias to the state estimation while circumventing
the detection of the bad data detector in the control center.
This is very serious and harmful, and could endanger other
subsequent modules of control and decision in the power grid.

While retaining the weighted least squares estimator in
power system, Fig. 3 shows that there is an adjustment pro-
cess of state variables in the introduced Kalman filter when
the FDIA occurs in the second half of the observation period.

FIGURE 3. The response of state variables with the Kalman estimator
under the FDIA.

FIGURE 4. The inconsistency between the response of the Kalman filter
and the weighted least squares estimator under the FDIA.

From the derivation of weighted least squares estimation,
the response of the estimated state variables is immediate
at each time slot. But from Equation (12), we observe that
the influence of the attack vector at the current and previous
time slots is coupled together. When the FDIA occurs at the
first time, the state transition based on the accurate history
state variables cause the variation of estimated state variables
by the Kalman filter changing a little. Clearly, there is an
adjustment process until the Kalman filter estimator reaches
the steady state. The period of sinusoidal voltage signal is
0.02s. However, the adjustment process is more than half of
the signal period under normal process noise until estimated
state variables reach stable states. With a smaller process
noise, the adjustment process becomes longer.

Fig. 4 shows the variance of estimated results about the
Kalman filter estimator and the weighted least squares esti-
mator. In the first half of the observation period, there is no
FDIA launched in meter measurements. The estimated states
from the two estimators are almost the same, and the differ-
ence of estimated states from the two estimators is smaller
than the predefined threshold. This result can be observed
from Fig. 5(a), and this implies that there is no FDIA occur-
ring. For the second half of observation period, the FDIA is
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FIGURE 5. Detection performance of the proposed detection method
under the FDIA with (a) large process noise. (b) small process noise.

launched. The response of the estimated electrical measure-
ments from the weighted least squares estimator immediately
reaches the maximum value, while there is a slow adjustment
process of the estimated electrical measurements from the
Kalman filter. The inconsistency about the response of the
two estimators allows the FDIA to be detected effectively.
Fig. 5(a) shows the detection performance. When the FDIA
occurs, the ek exceeds the given threshold, which allows it to
be detected quickly. Note that the threshold can be obtained
through the normal historical state information.

Fig. 5(b) shows the detection performance of the proposed
detection method with small process noise under the occur-
rence of the FDIA. The process noise is set to be ten times
smaller than the normal process noise. Compared with results
in Fig. 5(a), the values of detection indicators are significantly
changed and the available FDIA detection time is increased.

The injected false data can usually cause a large pertur-
bation on system states, while the detection rate may suffer
from a slightly increase so that the sensitivity and reliability of
attack detection should be carefully considered. Our proposed
deviation-based FDIA detection algorithm can be completed
within every state estimation and has good computational
efficiency. Usually, in order to reduce false alarms, when
ek exceeds the threshold value τ for three consecutive time
slots, an alarm is triggered to report FDIA. The detection
threshold τ is chosen based on the historical observations
and the tradeoff of detection probability and false alarm
probability. The attack detection performance for different
state variables under different attack strengths is shown in
Fig. 6(a). We define a detection window width to describe the
detection performance of our proposed detector. The detec-
tion window width is the time interval between the beginning

FIGURE 6. (a) Attack detection performance for different state variables
under different attack strength. (b) Detection performance of the
proposed detector considering exponential weighting function.

and end of alarms. The time when an alarm ends is defined
as the start time when ek is less than the threshold τ for
three consecutive time slots. Since state variables x1 and x2
are integrated indicators about amplitude and phase, in order
to launch FDIAs with different attack strengths, we change
the injected bias to the state variables. The bias injected
into the state variables ranges from 0.1 to 1. We observe
that the detection performance increases with the increase
of attack strength. It is because when the injected attack
vector increases, the robustness of the Kalman filter and the
exponential weighting function can adaptively suppress the
increased attack strengths of FDIAs while the response of
the weighted least squares estimator is real-time. Therefore,
the deviation of the two estimators becomes larger and the
detection index also increases. For example, if the introduced
state errors to both state variables x1 and x2 are the same,
FDIA can be easily detected when both state variables are
simultaneously attacked, compared with cases that only one
state variable is attacked as shown in the Fig. 6(a). It is
reasonable that not all the state variables are attacked thus
that the influence of FDIA is not significant. The detection
performance is about the same when only one state variable
is attacked with the increase of the attack strength. Fig. 6(b)
shows the amount of improvement of the proposed detector
by using the exponential weighting function. Compared with
the case without the exponential weighting function in the
introduced Kalman filter, we can observe that when the attack
strength of FDIAs is smaller than 0.4, the detection perfor-
mance of our proposed detector with the exponential weight-
ing function is slightly improved. It is because a smaller false
data injection to meter measurements does not lead a large
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FIGURE 7. Detection performance of proposed deviation-based detection
method for (a) step attacks. (b) random attacks.

deviation to the estimated states. However, when the attack
strength of FDIAs is bigger than 0.4 and with the increase
of attack strength, the influence leading to the deterioration
of estimation performance can be better suppressed by the
exponential weighting function in the Kalman filter. The
improvement of detection performance by using exponential
weighting function can be obviously reflected. Specifically,
when attack strength of FDIAs is smaller than 0.4, the power
of the exponential weighting function in Equation (13) does
not change too much. Then, after the update of measurement
noise covariance R in Equation (8), the Kalman gain K
becomes slightly smaller. Subsequently, the estimated mea-
surements of the Kalman filter also decrease a little and the
difference between the Kalman filter and the weighted least
squares estimator becomes larger. However, the difference
does not increase too much compared with the case without
the exponential weight function in our proposed detector.
When the attack strength of FDIAs is bigger than 0.4, the
power of the exponential weighting function in Equation (13)
becomes large and the measurement noise covariance thus
has a big change. Then the Kalman gain and the estimated
measurements become much smaller. Finally, the difference
between two estimators becomes more obvious. Overall, the
detection performance of our proposed detector is better than
that without using the exponential weight function.

The estimation results of theweighted least squares estima-
tor are obtained at every current time slots, and when FDIAs
occur, the estimation results are incorrect. The estimation
results of the weighted least squares estimator are obtained
at every current time slots, and when FDIAs occur, the esti-
mation results are incorrect. But the estimation results of the

Kalman filter have an adjustment process of state variables
when the FDIA occurs. Finally, the estimation results of
Kalman filter are also incorrect as shown in Fig. 5(a) and
Fig. 5(b). The reason is that as the sampling and estimation
proceed, the estimation results of two estimators are both
incorrect and the small lag of the two estimators makes the
FDIA undetected.

Although the stealthy FDIA is difficult to detect, there are
still some other types of attacks in smart grid, such as step
attacks and random attacks. A step attack involves adding
a positive or negative value to the original measurements.
A random attack usually adds random interference to real
measurements. Despite these attacks can be detected by tradi-
tional residual-based methods, our proposed deviation-based
detectionmethod can also detect these attacks effectively. The
results are shown in Fig. 7(a) and Fig. 7(b), in which these
attacks are also launched at the second half of the observation
period.

VI. CONCLUSION AND FUTURE WORK
In this paper, from the perspective of detection-based defense
against coordinated FDIAs, we propose a deviation-based
robust detection method in smart grid. To monitor state vari-
ables and estimated measurements more effectively, an addi-
tional Kalman filter estimator is introduced for real-time
dynamic state estimation with the historical states’ transi-
tions. The impact of FDIAs incurs an adjustment process
in the Kalman filter based on state space model, while the
response of the traditional weighted least squares estimator
is realtime at each time slot. The existence of the discrepancy
of the proposed two estimators allows FDIAs to be effec-
tively detected. We have also applied the exponential weight-
ing function to enhance the robustness of the Kalman filter
against attacks, and the detection performance is improved.
Moreover, the proposed detection method can also detect
other types of attacks, such as random attacks and step attacks
and the detection performance is very good. Finally, experi-
mental results have demonstrated the effectiveness and reli-
able response of proposed deviation-based detection method.
In future work, since there exists continuous variations of
loads and generation fluctuations in smart grid, the time-
variant state transition matrix updating methods will be stud-
ied. Faults can cause the transmitted meter measurements
lose in the transmission process. The new introduced Kalman
estimator can obtain priori estimation of states and measure-
ments based on normal historical data and prior informa-
tion. If some meter measurements are lost, these missing
measurements can be replaced by estimated measurements
to improve the reliability of state estimation. Furthermore,
we will study the identification of the attack strength and the
time occurrence of attacks in smart grid.
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