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Abstract—For achieving the goal of two-way communication
and power flows, smart grids are integrated with much state-
of-the-art hardware and software. However, these newly added
components also introduce a lot of vulnerabilities into the power
systems, which results in that malicious users can launch various
cyber-physical attacks to steal electricity. Existing electricity theft
detection techniques suffer from an implicit assumption that
malicious users tamper with smart meter readings to values
much less than their actual electricity consumptions. These are
called Large-amount Electricity Theft (LET) attacks. Nevertheless,
in the real world, some malicious users may be cautious enough to
deliberately launch Small-amount Electricity Theft (SET) attacks
where smart meter readings are manipulated to numbers slightly
lower than actual values, mainly to escape detection. To address
this limitation, we propose a detector able to deal with both LET
and SET attacks effectively. This detector applies a cumulative sum
(CUSUM) control chart and a Shewhart control chart together to
analyze users’ reported readings and measurements of a central
observer meter. It consists of an electricity theft detection phase
which aims to detect the existence of LET/SET attacks timely
and a malicious user identification phase which aims to identify
malicious users exactly. Extensive experiments are conducted to
evaluate the proposed detector, and the results show that it has
good performance in terms of several metrics.

Index Terms—Internet of Things (IOTs), Electricity theft, smart
grid, anomaly detection, malicious users identification, control
charts.

I. INTRODUCTION

With electricity demand increasing rapidly over decades,
power systems which were built over one century ago are
operating at an overload [1, 2]. Consequently, people around the
world are experiencing exponentially increasing power outages
[3]. To better satisfying users’ power demands and simultane-
ously reducing carbon dioxide emissions, many countries like
the USA, Japan, and China are making every effort to establish
their own smart grids [4]. This new generation of power systems
is promised to provide two-way communication and power
flows between users and utility companies. For achieving this
goal, many Internet of Things hardware (e.g., smart meters) and
software (e.g., a cyber layer for metering systems) are integrated
into smart grids. This introduces many potential vulnerabilities
into the power systems [5]. By leveraging these vulnerabilities,
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malicious users can launch various cyber-physical attacks
against electronic devices and communication networks in
smart grids.

One main purpose of these malicious users is to steal
electricity, mainly by launching cyberattacks (e.g., man-in-
the-middle attacks) or physical attacks (e.g., bypassing meters)
to tamper with meter readings into smaller numbers. Compared
to physical attacks, cyber-attacks are usually more covert and
flexible and can be launched almost anywhere and any time.
Electricity theft has many negative effects. First, it incurs huge
economical losses for worldwide utility companies, which
amounts to $89.3 billion and $96 billion in 2014 and 2017,
respectively [6, 7]. These economical losses are passed on to
all the users, by charging all customers with higher tariffs for
the electricity services. It is reported that each customer in
the UK has to pay an extra C30 for electricity theft [8]. If
electricity theft is pervasive in a region (e.g., India), many power
quality problems such as brownouts and blackouts will appear
more frequently, which can seriously harm users’ electrical
appliances.

Many countries issue-specific laws to punish users’ electricity
theft behaviors. For example, the Theft Act 1968 in the UK
says that malicious users are liable to imprisonment for a
term not exceeding five years [9]. As reported, from 2014 to
2016, in Northern Ireland, a total number of 354 people were
convicted on charges for electricity theft, among which nearly
50 people were imprisoned [10]. However, due to factors such
as poverty and illiteracy, electricity theft can still be found
in almost every region throughout the world. For example, in
some areas of Northern Ireland, as many as six out of every 10
meters are tampered [10]. The Energy and Minerals Regulatory
Commission in Jordan says that 8,836 electricity thefts in total
are documented during the first half of 2019 [11]. According
to Netbeheer Nederland, the illegal cannabis farms discovered
and closed down in the Netherlands in 2019 steal a total of
around 60 million euros in electricity [12]. In March 2020,
police in California also bust three illicit marijuana grow-ops
which have stolen electricity which is worth approximately
$120,000, $88,000, and $11,000, respectively [13].

To prevent users from stealing electricity, many detection
techniques have been developed, which can be roughly classi-
fied into machine learning-based and measurement mismatch-
based methods. The basic idea of the former category is
to apply various machine learning methods such as support
vector machine and artificial neural networks to analyze users’
load profiles, aiming to find abnormal electricity consumption
patterns that are highly related to electricity theft [14–17].
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In contrast, the measurement mismatch based detection
techniques require to deploy some advanced sensors in distri-
bution networks [18–23]. By comparing measurements from
advanced sensors with summations of reported readings of
users under investigation, the search zone of electricity theft
can be gradually narrowed down until all malicious users are
identified.

Existing detection techniques have a limitation in that they
implicitly assume that malicious users’ reported readings are
much less than their actual electricity consumptions. These
attacks are called Large-amount Electricity Theft (LET) attacks
in this paper. Nevertheless, in the real world, some malicious
users may deliberately tamper with meter readings to values
just a little smaller than the actual values, which is called Small-
amount Electricity Theft (SET) attacks, to escape detection.
Since existing detection techniques do not consider SET
attacks when they are originally designed, their performance
undoubtedly degrades drastically or even is not effective under
SET attacks. In this paper, to address the above limitation, we
aim to develop a detector that can effectively detect both LET
and SET attacks.

The cumulative sum (CUSUM) and the Shewhart control
charts are two commonly used statistical tools for change
detection. Both of them have a centerline as well as two control
limits. The CUSUM control chart plots the cumulative sum
of deviations between sample values and a target value of a
process variable of interest in time order. If the cumulative sum
of deviations exceeds one of the two control limits, the CUSUM
control chart claims that this process variable is affected by
some special causes of variation. Since the CUSUM control
chart incorporates all the information contained in multiple
consecutive samples, it can efficiently detect small changes in
the process [24]. Thus, it is applied to detect the SET attacks.
In contrast, the Shewhart control chart simply plots the sample
values of the process variable of interest in time order. If the last
sample value exceeds one of its control limits, it claims that this
process variable is affected by some special causes of variation.
Since the Shewhart control chart uses only information in
one sample and ignores other information given by the entire
sequence of samples, it is insensitive to detect small changes
but can detect large changes in a process more quickly than
the CUSUM control chart [24]. Thus, the Shewhart control
chart is employed to detect LET attacks. To sum up, we in
this paper propose an electricity theft detector in which the
Shewhart and the CUSUM control charts are mainly used to
detect LET attacks and SET attacks, respectively.

Following papers [22, 23], we assume that a central observer
meter is installed in a community to measure the total amount
of electricity supplied to all users. The proposed detector
consists of an electricity theft detection phase and a malicious
user identification phase. In both phases, the control charts’
parameters need to be first estimated based upon historical
readings of smart meters and measurements of the central
observer meter. In the electricity theft detection phase, the goal
is to detect the existence of electricity theft. In this phase,
the Shewhart and the CUSUM control charts are applied to
analyze the difference between the central observer meter’s
measurements and the summation of users’ reported readings.

If the Shewhart control chart detects reading anomalies, it
indicates the existence of at least one malicious user launching
LET attacks and/or several malicious users launching SET
attacks. If the CUSUM control chart detects reading anomalies,
it indicates the existence of at least one malicious user
launching SET attacks. About the malicious user identification
phase, it aims to locate malicious users exactly. In this phase,
the above two control charts are combined to analyze every
user’s daily electricity consumption. On the whole, if the
Shewhart/CUSUM control chart detects reading anomalies,
the corresponding user is a malicious user launching LET/SET
attacks. Contributions of this paper are highlighted as follows:
• To the best of our knowledge, it is the first work that

considers SET attacks in electricity theft detection. For
better understanding SET attacks, we conduct analyses
regarding how malicious users launch SET attacks when
a central observer meter is installed in a community;

• We propose an electricity theft detector in which the
Shewhart and the CUSUM control charts are jointly used.
The proposed detector not only can detect the existence of
LET and SET attacks timely but also can locate malicious
users exactly;

• We provide theoretical performance analysis for the
proposed detector, mainly by modeling the detection
process as a Markov chain;

• Extensive experiments are conducted to evaluate the pro-
posed detector. Results show that it has good performance
in terms of several metrics.

The remainder of this paper is organized as follows. In
Section II, we introduce related works regarding electricity
theft detection techniques and provide some preliminaries of
the Shewhart and the CUSUM control charts. In Section III, we
define the problem and analyze how SET attacks are conducted.
In Section IV, we present how the detector works. In Section V,
we provide algorithm analysis about the proposed detector. In
Section VI, the experimental results are reported. We conclude
this paper in Section VII.

II. RELATED WORKS & PRELIMINARIES

A. Related works on electricity theft detection

In this section, we review related works regarding electricity
theft detection techniques. As aforementioned, these works
can be roughly classified into machine learning-based and
measurement mismatch-based detection techniques.

The machine learning-based detection techniques are essen-
tially various classifiers whose inputs are features extracted
from users’ load profiles, prior records, and other information
(such as geographical locations and tariff categories) [25] and
outputs are a list of adversaries that are highly suspected to
commit electricity theft [14–17]. For example, the authors in
[15] integrate a decision tree and a support vector machine
(SVM) to detect electricity theft. The decision tree outputs users’
expected electricity consumptions, which are further used as an
input of the SVM for reducing false-positive rates. The authors
in [16] apply a deep and wide conventional neural network for
electricity theft detection, where the wide component captures
global knowledge of users’ electricity consumption data, and
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the deep component accurately identifies the non-periodicity
of electricity theft and the periodicity of normal electricity
usages.

However, existing machine learning-based detection tech-
niques suffer from the following two issues: (1) data imbalance,
which means that among the collected samples, the number
of abnormal samples of malicious users is significantly lower
than those of benign samples of honest users [14]; (2) non-
malicious factors, which mainly include normal moving in/out
of residents, replacement of electrical appliances, and change of
seasonality [14]. Due to the above two issues, existing machine
learning-based detection techniques usually have a relatively
low detection rate, but a relatively high false-positive rate [26].

About power-measurement-based methods, they usually
require to install some advanced sensors in the distribution
networks to monitor whether users are consuming their
electricity abnormally [18–23]. For example, in [22, 23], the
authors propose to install a central observer meter to register
the total amount of electricity supplied to all users in a
neighborhood area network. Relationships between users’ actual
electricity consumptions and reported readings are modeled
by linear or non-linear functions, called users’ behavior
functions [22]. Since the central observer meter’s measurements
are approximately equal to the summation of users’ actual
electricity consumptions, the measurements are further related
with users’ reported readings via a linear or non-linear system of
equations. By solving this system of equations, these detection
techniques can find out how much users’ reported readings
deviate from their actual electricity consumptions.

Compared to machine learning-based detection techniques,
measurement mismatch-based detection techniques usually have
higher detection rates and lower false-positive rates, with a
trade-off of higher deployment costs for installing advanced
sensors. However, both of the above two categories of detection
techniques implicitly assume that malicious users manipulate
electricity consumption to values far less than the actual
values. This implies that these detection techniques are initially
designed to detect LET attacks and that their performance
undoubtedly degrades a lot when used for detecting SET
attacks.

To address this limitation, in this paper, we apply the
CUSUM control chart, which can effectively detect small
changes in a process to detect the SET attacks. Since the
Shewhart control chart can detect large changes in a process
more quickly than the CUSUM control chart, it is applied to
detect LET attacks. Although the CUSUM or the Shewhart
control charts have been applied in many fields such as freeway
incident detection [27] and intrusion detection [28], to the
best of our knowledge, they are first used in electricity theft
detection. The above two control charts are used to analyze
measurements from a central observer meter and readings
reported from users’ smart meters to detect electricity theft
and locate malicious users.

B. Preliminaries of control charts

For better understanding, in this section, we introduce some
preliminaries of the Shewhart and the CUSUM control charts,
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Fig. 1. An illustration of a Shewhart control chart and a CUSUM control
chart: (a) samples of x are divided into subgroups of equal size; (b) a typical
Shewhart control char; (c) a typical standardized CUSUM control chart.

which are two typical statistical tools to determine whether a
process variable of interest, denoted by x, is affected by some
special causes of variation or not. As shown in Fig. 1, both the
Shewhart and the CUSUM control chart contain a centerline,
an upper control limit, and a lower control limit, explained
later.

We do not make any assumption regarding the distribution of
the process variable x. Assume that samples of x are obtained
periodically. Specifically, we use x(j) to denote the sample of
x at period j, with j = 1, 2, 3, · · · . Let mx denote the size of
subgroups into which consecutive samples of x are divided. As
shown in Fig. 1(a), we set mx = 5. We denote by x̄ the average
of samples of x in one subgroup. According to the central limit
theorem [29], provided that the process variable x follows a
certain distribution with mean µx and variance σ2

x and that mx

is large enough, the sample average x̄ approximately follows
a normal distribution with mean µx̄ = µx and σx̄ =

σ2
x

mx
. As

pointed out in [24], in most cases, when mx equals 4 or 5,
it is sufficient to ensure reasonable robustness to the normal
distribution assumption [30].

Assume that samples of x after the j-th period are divided
into subgroups. For example, in Fig. 1(a), samples of x after
the 3rd period, i.e., x(3), x(4), · · · , x(12), are divided into
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two subgroups, with the first subgroup containing the first five
samples (i.e., x(3), x(4), · · · , x(7)) and the second subgroup
containing the last five samples (i.e., x(8), x(9), · · · , x(12)).
Apparently, the k-th subgroup contains the following samples:
x(j+ (k−1)mx), x(j+ (k−1)mx+ 1), · · · , x(j+kmx−1),
whose average, denoted by x̄(k, j), is calculated as

x̄ (k, j) =
1

mx

j+kmx−1∑
t=j+(k−1)mx

x (t). (1)

For example, in Fig. 1(a), the averages of the first and the
second subgroups of samples are x̄(1, 3) = 1

5

∑7
t=3 x(t)

and x̄(2, 3) = 1
5

∑12
t=8 x(t), respectively. Note that values of

x̄ (k, j) are regarded as samples of x̄.
Shewhart control chart: As shown in Fig. 1(b), in a

Shewhart control chart, the samples of x̄ are plotted in a
time order. The center line, the upper control limit, and the
lower control limit are the lines y = µx̄, y = µx̄ + hsσx̄, and
y = µx̄−hsσx̄ on a coordinate plane, respectively, where hs is
the distance of control limits from the center line, expressed in
multiples of standard deviation of x̄ (i.e., σx̄) [24]. When the
Shewhart control chart is used independently, it is customary
to choose hs = 3 [24]. If all samples of x̄ fall between the line
y = µx̄+hsσx̄ and the line y = µx̄−hsσx̄, the process variable
x is unaffected by some special causes of variation. Otherwise,
if one or more samples are plotted beyond one of the above
two control limits, the process variable x is considered to be
affected by some special causes of variation [24].

CUSUM control chart: Let Sx̄(k, j) denote cumulative
sum of deviations between the first to the k-th samples of
x̄ after period j (i.e., x̄ (1, j) , x̄ (2, j) , . . . , x̄ (k, j)) and the
target value µx̄, expressed in units of σx̄. If we need to detect
positive changes (which mean that with time going by, values
of sample averages x̄ tend to increase), Sx̄ (k, j) is calculated
as

Sx̄ (k, j)=max

[
0,
x̄ (k, j)−µx̄

σx̄
−l+Sx̄ (k−1, j)

]
, (2)

where max [a, b] returns the maximum between numbers a and
b. The constant l is called a reference value, which is often set
to one half of the magnitude of the change to be detected in
units of σx̄ [24]. For example, if we set l = 0.5, then when the
mean of the normal distribution followed by x̄ changes from
µx̄ to µx̄ + σx̄, the CUSUM control chart can detect it. On
the other hand, if we need to detect negative changes (which
mean that with time going by, the values of sample averages
x̄ have a tendency to decrease), we need to put a negative
sign “−” before the standardized term x̄(k,j)−µx̄

σx̄
for calculating

Sx̄ (k, j).
In a standardized CUSUM control chart, the cumulative

sum Sx̄ (k, j) is plotted in a time order, as shown in Fig.
1(c). The center line, the upper control limit, and the lower
control limit of the CUSUM control chart are the lines y = 0,
y = hc, and y = −hc, respectively, where hc is a user-defined
decision interval. In applications, if the CUSUM control chart
is used independently, we typically set hc = 5 [24]. If Sx̄ (k, j)
exceeds hc, then the process variable of interest x is affected by
some special causes of variation; otherwise, x is not affected by
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Fig. 2. A simplified architecture of smart grid in a community.

any special causes of variation. If the starting value Sx̄ (0, j) is
set as zero, the CUSUM control chart is called a standard one.
Otherwise, if Sx̄ (0, j) is set as a non-zero value, the CUSUM
control chart is called a fast initial response (FIR) one [24].

To conclude, the CUSUM control chart incorporates all the
information contained in multiple consecutive samples of x̄.
Thus, it is sensitive to detect the occurrence of small changes
in the process [24]. In contrast, the Shewhart control chart uses
only information contained in the last sample of x̄ and ignores
other information given by the entire sequence of samples.
Thus, it is relatively insensitive to detect small changes in
the process [24]. Also, the Shewhart control chart has the
advantage that it usually can detect large changes more quickly
than the CUSUM control chart [24]. Hence, in applications,
the CUSUM control chart is usually applied to detect small
changes in the process, while the Shewhart control chart is
usually applied to detect large changes in the process [24].
Finally, we summarize the main notations in this paper in
Table I. Note that in real applications, for different scenarios,
the process variable of interest (i.e., x) may be different. In
those cases, the symbol x in the above notations (e.g., µx, σx,
mx) is replaced by that specific variable’s notation. In this
paper, we are mainly interested in the process variables w and
yi, the definitions of which can be seen in Table I.

III. PROBLEM STATEMENT

In Fig. 2, we depict a simplified architecture of the smart
metering system in a community. As shown in the figure,
a smart meter with two-way communication capability is
installed at each user’s premises. The smart meters periodically
measure corresponding users’ electricity consumptions. These
readings are further reported to utility companies via a central
observer meter which is installed at some places (e.g., on
an electrical pole) in the community. The central observer
meter is essentially a tamper-resistant and function-enhanced
smart meter with stronger computation capability and larger
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TABLE I
NOTATIONS

Notations Descriptions
U Let U = {1, 2, ..., u} denote the set of all users in

the community, with u being the total number of
users.

r(j),
ε(j)

Let r(j) and ε(j) denote the central observer me-
ter’s electricity measurement and the measurement
error, respectively, at period j. Then, the actual
amount of electricity supplied to all the users in
the community can be calculated as r(j) + ε(j),
with j = 1, 2, 3, · · · .

q(i, j),
q′(i, j)

Let q(i, j) and q′(i, j) denote user i’s measured
and reported electricity consumptions at period j,
respectively, with i ∈ U, j = 1, 2, 3, · · · .

e(i, j) Let e(i, j) denote the measurement error of user i’s
smart meter at period j, with i ∈ U, j = 1, 2, 3, · · · .

f(i, j),
f̃(i, j)

Let f(i, j) denote the technical losses of electricity
when it is transmitted from the central observer meter
to user i’s smart meter at period j, with i ∈ U, j =
1, 2, 3, · · · . Let f̃(i, j) denote our estimated value
of f(i, j).

w,w(j) Let w(j) denote the difference between the central
observer meter’s measurement and the summation
of all users’ reported readings and the estimate of
technical losses at period j, i.e., w(j) = r(j)−∑
i∈U

(q′(i, j) + f̃(i, j)). w(j) is regarded as the j-

th sample of the random variable w, with j =
1, 2, 3, · · · .

τ Let τ (in hour) denote the length of a reporting
period of smart meters, which is usually set as 0.25
hour in applications.

yi,
yi(k, j)

Let yi(k, j) denote user i’s total electricity con-
sumption on the k-th day from period j. Since each
smart meter generates 24/τ electricity consumption
readings every day, we technically have yi (k, j) =∑j+k

24
τ
−1

t=j+(k−1)
24
τ

q (i, t). Moreover, yi(k, j) is re-

garded as the k-th sample of the random variable
yi, with k = 1, 2, 3, · · · . In the context, we drop the
subscript i of yi and yi (k, j) for notation simplicity,
and write them as y and y (k, j), respectively.

x, µx,
σx, x(j)

Let x denote the process variable of interest, which
is assumed to follow a certain distribution with a
mean µx and a variance σ2

x. We denote by x(j) the
sample of x at period j.

mx,
x̄(k, j),
x̄, µx̄;

Let mx denote the size of subgroups into which
samples of x are divided. Let x̄(k, j) denote the
average of the k-th subgroup of samples of x from
period j. x̄(k, j) is regarded as the k-th sample of
the random variable x̄, with k = 1, 2, 3, · · · . Let µx̄
denote the mean of the distribution followed by x̄.

x̃ (k, j),
Sx̄(k, j)

Let x̃ (k, j) denote the difference between the largest
and the smallest samples of x in the k-th subgroup
from period j. Let Sx̄(k, j) denote the cumulative
sum of deviations between the first to the k-th
samples of x̄ after period j and the target value
µx̄.

storage space [22]. It can measure the total amount of electricity
supplied to all users in the community.

In practice, no matter how well designed the central observer
meter and smart meters are, these devices have measurement
errors, which are defined as the differences between mea-
sured quantities and their actual values. Let r(j) and ε(j)
denote the central observer meter’s electricity measurement
and measurement error, respectively, at period j. Then, the
actual amount of electricity supplied to all the users in the
community can be calculated as r(j) + ε(j). Assume that
in the community there are u users which are denoted by
U = {1, 2, · · · , u}. Let q(i, j) and q′(i, j) denote user i’s
measured and reported electricity consumptions at period j,
respectively, where i ∈ U, j = 1, 2, 3, · · · . In the real world,
most users honestly report their electricity consumptions. Then,
for honest users, we have q′(i, j) = q(i, j). However, some
malicious users manipulate their readings to smaller values,
trying to use electricity for fewer fees and even for free. For
these malicious users, we have q′(i, j) < q(i, j). Let e(i, j)
denote the measurement error of user i’s smart meter at period
j, where i ∈ U, j = 1, 2, 3, · · · . Then, the actual amount of
user i’s electricity consumption at period j can be calculated
as q(i, j) + e(i, j). Let f(i, j) denote the technical losses of
electricity when it is transmitted from the central observer meter
to user i’s smart meter at period j. Based upon the energy
conservation law, the total energy supplied to all users is equal
to the summation of all users’ actual electricity consumptions
and their technical losses. Technically, we have

r(j) + ε(j) =
∑
i∈U

(q(i, j) + e(i, j) + f(i, j)). (3)

In practical applications, the technical loss f(i, j) is usually
estimated based upon some mathematical models [31]. Let
f̃(i, j) denote the estimated value of f(i, j). Let w(j) denote
the difference between the central observer meter’s measure-
ment and the summation of all users’ reported readings and
estimated technical losses at period j. Technically, we have

w(j) = r(j)−
∑
i∈U

(q′(i, j) + f̃(i, j)). (4)

Combining Equations (3) and (4), we can derive

w (j) =
∑
i∈U

(q (i, j)− q′ (i, j)) +
∑
i∈U

e (i, j)− ε (j)

+
∑
i∈U

(
f (i, j)− f̃ (i, j)

)
,

(5)

where the first, second, and third items are the reported error
of the users, the sum of the measurement estimation error of
the users, and the power-transmission-loss estimation error,
respectively. Apparently, if there are malicious users in a
community, we have

w (j) >
∑
i∈U

e (i, j)− ε (j) +
∑
i∈U

(
f (i, j)− f̃ (i, j)

)
. (6)

For easy implementation, in applications we usually set a
threshold h0 to help judge whether there are malicious users in
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the community. Specifically, we claim that there are malicious
users in the community if the inequality

w(j) = r(j)−
∑
i∈U

(q′(i, j) + f̃(i, j)) > h0 (7)

holds [18, 19]. We will later demonstrate how h0 can be
determined in practice.

In the existing literature such as papers [14, 18–23, 32, 33], it
is assumed that malicious users’ reported readings are much less
than their actual electricity consumptions. Once these malicious
users begin to steal electricity, the central observer meter [18–
23] can detect the existence of reading anomalies. Attacks
of this kind are referred to as Large-amount Electricity Theft
(LET) attacks in this paper. However, in reality, some malicious
users may have a sense of counter-reconnaissance and they
will try to escape the detection when stealing electricity. For all
the detection methods in the literature, detection thresholds are
used to judge if users steal electricity or not. A malicious user
can steal electricity successfully by only stealing an amount
much smaller than the corresponding detection threshold.

In this paper, we consider the cases where some malicious
users deliberately and carefully tamper with their electricity
consumptions to values just a little smaller than actual read-
ings. The differences between the central observer meter’s
measurements and the summation of smart meters’ readings
do not exceed the threshold h0, i.e., the inequality (7) does not
hold. Attacks of this type are referred to as the Small-amount
Electricity Theft (SET) attacks in this paper.

We summarize our assumptions as follows:
• These readings of smart meters are reported to utility

companies via a tamper-resistant and function-enhanced
central observer meter which is installed at some places
(e.g., on an electrical pole) in the community. It can
measure the total amount of electricity supplied to all
users in the community.

• We consider SET attacks with which malicious users
deliberately and carefully tamper with their electricity
consumptions to values just a little smaller than actual
readings.

• Once malicious users begin electricity theft behaviors, they
do not stop until they are caught by utility companies.

• Malicious users only tamper with their smart meters.
With the system model listed as the above equations along

with the explanations as well as the above assumptions, we
summarize our goals as follows:
• This paper addresses the limitation that the performance

of existing electricity theft detection techniques degrades
a lot under SET attacks.

• We aim to develop detection techniques that can effectively
deal with both LET and SET attacks.

IV. THE PROPOSED DETECTOR

For a better understanding of the SET attacks, in this section,
we first present a SET attack example. Then, we demonstrate
the working strategy of the proposed detector, utilizing the
Shewhart and the CUSUM control charts together to detect
and locate malicious users launching LET or SET attacks. The

proposed detector consists of an electricity theft detection phase
which aims to detect the existence of LET or SET attacks as
well as a malicious user identification phase which aims to
identify malicious users launching LET or SET attacks exactly.

A. SET attack analysis

We first demonstrate how the threshold h0 in inequality
(7) can be determined in practice. From Equation (5), we
can know that if all the users in the community are honest,
we have w(j) =

∑
i∈U

e(i, j)−ε(j) +
∑
i∈U

(
f (i, j)− f̃ (i, j)

)
.

Let us think of w(j) as samples of a process variable w.
Since measurement errors e(i, j),∀i ∈ U and ε(j), and the
difference between f(i, j) and f̃(i, j),∀i ∈ U can be regarded
as samples of independent random variables, based upon the
central limit theorem [29], we can conclude that when all the
users are honest, the process variable w approximately follows
a normal distribution with a mean µw and a variance σ2

w, i.e.,
w ∼ N(µw, σ

2
w).

Assume that we have n0 periods of historical readings of
r(j) and q′(i, j) starting from period j0 and that all the users in
the community are honest from period j0 to period j0 +n0−1.
Based upon some mathematical models [31], the estimated
technical loss f̃(i, j) can be calculated. Thus, the sample values
of w during the above n0 periods can be derived according to
Equation (4). Let µ̂w and σ̂w denote the unbiased estimation
of µw and σw, respectively. Then, based upon the statistical
knowledge [34], µ̂w and σ̂2

w can be calculated as the mean
and the variance of samples of w, respectively. Technically,
we have

µ̂w =
1

n0

j0+n0−1∑
j=j0

w(j), (8)

and

σ̂2
w =

1

n0 − 1

j0+n0−1∑
j=j0

(w(j)− µ̂w)
2
. (9)

The statistical knowledge in [34] also indicates that the
random variable µ̂w−µw

σ̂w/
√
n0

follows a Student’s t-distribution
with n0 − 1 degrees of freedom. We can set the threshold h0

as the upper 100(1− α)% confidence bound for the mean µ0.
Technically, we have

h0 = µ̂w +
σ̂w√
n0
tα,n0−1, (10)

where tα,n0−1 denotes the 100(1− α)-th percentage point of
the Student’s t distribution with n0 − 1 degrees of freedom
such that the probability Pr{ µ̂w−µwσ̂w/

√
n0
≥ tα,n0−1} = α. In

applications, a typical value for α is 0.05.
For better understanding, we next illustrate the SET attacks

with the example in Fig. 3, where we assume that if all users are
honest, we have w ∼ N(µw = 10, σ2

w = 1). Furthermore, we
assume that based upon historical values of r(j) and q′(i, j) as
well as calculated values f(i, j),∀i ∈ U, j0 ≤ j ≤ j0 +n0− 1,
we can obtain µ̂w = 9.8 and σ̂w√

n0
t0.05,n0−1 = 3.2. Thus,

according to Equation (10), h0 can be set as 13. For easy
understanding, we now consider a simple case where there
is only one malicious user in the community who constantly
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Fig. 3. An example for illustrating SET attacks.

steals 1 unit (e.g., kWh) of electricity every period. In this case,
w will then follow a normal distribution with a mean µw + 1
and variance σ2

w, i.e., w ∼ N(µw + 1 = 11, σ2
w = 1). Ac-

cording to statistical knowledge, we can derive the probability
Pr (w (j) ≤ 13) is about 97.5%. This implies that the central
observer meter can detect this small reading abnormality with
a probability of 2.5%, which is relatively low. To conclude, in
applications, when malicious users launch SET attacks, they
could try their best to make the probability that the inequality
w(j) ≤ h0 holds as large as possible.

B. Phase I: Electricity theft detection

In this phase, we aim at detecting the existence of electricity
theft, mainly by applying the Shewhart and the CUSUM control
charts to monitor whether there are large and small changes
in the sample values of w, respectively. This phase is further
divided into a parameter estimation sub-phase and an anomaly
detection sub-phase, as demonstrated in the following.

Parameter estimation: As aforementioned, with historical
measurements of the central observer meter, users’ historical
reported readings and calculated technical losses, we can derive
samples w(j),∀j=j0, j0+1, · · · , j0+n0−1. Also, we analyze
that the process variable w approximately follows a normal
distribution with a mean µw and a variance σ2

w. This means
that if we apply the Shewhart can the CUSUM control chart
to monitor the changes in sample values of w, the normal
distribution assumption is satisfied.

However, to make the detector more robust and more practi-
cal (which means that it works regardless of the distribution
followed by w), we still divide the samples of w into subgroups,
each containing mw consecutive samples. In applications, we
usually choose n0 and mw such that we have at least 20 such
subgroups [24], i.e., b n0

mw
c ≥ 20. Let w̄ denote the mean of

samples of w in one subgroup. Then, according to the central
limit theorem [34], w̄ follows a normal distribution with a
mean µw̄ = µw and a variance σ2

w̄ = σ2
w/mw.

To let the Shewhart and the CUSUM control charts work
properly, we need to know both µw̄ and σw̄ in advance.
Nevertheless, in practice, the true values of µw̄ and σw̄ are
usually unknown, and thus their estimate values are used instead.
Next, we demonstrate how to get an unbiased estimation of
µw̄ and σw̄, denoted by µ̂w̄ and σ̂w̄, respectively.

(1) We first explain how to derive µ̂w̄. Since µw̄ = µw and
µ̂w can be obtained by Equation (8), we have

µ̂w̄ = µ̂w =
1

n0

j0+n0−1∑
j=j0

w(j).

(2) We then focus on how to derive σ̂w̄. Since σ2
w̄ = σ2

w/mw,
we have

σ̂w̄ =
σ̂w√
mw

.

This implies that once σ̂w is obtained, we can immediately
derive σ̂w̄. Although the unbiased estimation of the variance
σ2
w (i.e., σ̂2

w) can be obtained by Equation (9) [34], the
unbiased estimation of the standard deviation (i.e., σ̂w) cannot
be obtained by simply performing the square root on the right
side of Equation (9) [24]. In practice, σ̂w is calculated as
follows:

(a) Let w̃ denote the difference between the largest and
the smallest values in one subgroup of samples of w.
Let w̃ (k, j) denote the k-th sample of w after period j.
As aforementioned, n0 samples of w after period j0 (i.e.,
w(j), ∀j=j0, j0+1, · · · , j0+n0−1 ) are divided into subgroups,
each containing mw elements. Thus, we can obviously obtain
w̃ (k, j0) ,∀k = 1, 2, · · · b n0

mw
c.

(b) Let dw denote the mean of the distribution followed by
the ratio of w̃ to σw, i.e., dw = E( w̃σw ), where E(·) denotes
the mean operation. It is well studied that the value of dw is a
function of the subgroup size mw [24]. The values of dw for
different subgroup sizes up to 10 are shown in Table II [24].
Obviously, once mw is determined, the value of dw is known.
For example, if mw = 3, we have dw = 1.693. Thus, we have

σ̂w =
E(w̃)

dw
=

1

dw

1⌊
n0

mw

⌋ b n0
mw
c∑

k=1

w̃ (k, j0). (11)

Anomaly detection: Assume that we start the detection
from period j1, with j1 > j0 +n0−1. Obviously, by Equation
(4), the samples of w after period j1 can be calculated. These
samples of w are arranged into subgroups, each containing
mw elements. With elements in the k-th subgroup, the average
w̄(k, j1) is calculated by Equation (1). If there are malicious
users in the community, sample values of w have a tendency
to get larger, which further leads to the increase of sample
values of w̄.

We apply the Shewhart control chart to see whether there
are moderate or large increases in the sample values of w̄.
Specifically, if

w̄ (k, j1)− µ̂w̄
σ̂w̄

> hs,

the detector signals the existence of reading anomalies in
the community. On the whole, the following three cases are
possible: (1) At least one malicious user is launching LET
attacks; (2) At least one malicious user is launching LET
attacks and at least one malicious user is launching SET attacks
simultaneously; (3) Several malicious users are simultaneously
launching SET attacks and the summation of their stolen
electricity is large enough to be detected by the Shewhart
control chart.
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TABLE II
VALUES OF CONSTANT dw FOR OBTAINING UNBIASED STANDARD DEVIATION

mw 2 3 4 5 6 7 8 9 10
dw 1.128 1.693 2.059 2.326 2.534 2.704 2.847 2.970 3.078

At the same time, we also apply the CUSUM control chart to
monitor the slight increase of sample values of w̄, which usually
implies the existence of malicious users launching SET attacks.
Specifically, we calculate Sw̄ (k, j1) according to Equation (2).
If Sw̄ (k, j1) > hc, there exists at least one malicious user
launching SET attacks. In this case, the following two cases
are possible: (1) there is only one malicious user to launch SET
attacks; (2) there are several malicious users simultaneously
launching SET attacks, but the stolen electricity is not large
enough to be detected by the Shewhart control chart.

The above strategies are concluded in Algorithm 1, where
the parameter estimation phase is summarized in lines 1 to 4,
and the anomaly detection phase is summarized in lines 5 to
27. In Algorithm 1, the variable v is a counter indicating the
number of rounds of inspection. In each round of inspection,
the cumulative sum Sw̄ (k, j1) involves at most K1 samples of
w̄. If within one round of inspection, neither the Shewhart nor
the CUSUM control chart can detect the existence of reading
anomalies, the detector concludes that all users are honest up to
now, and sets out the next round of inspection for continuing
the monitoring process. Before a new round of inspection
process begins, the detector resets the value of Sw̄ (k, j1) to
the initialized value Sw̄ (0, j1). Otherwise, if within one round
of inspection, either the Shewhart or the CUSUM control chart
detects reading anomalies, the proposed detector goes into
Phase II: malicious user identification, which is detailed in the
following.

C. Phase II: Malicious user identification

After detecting the existence of reading anomalies in phase
I, we are still unknown which users are malicious. Thus, in this
phase, we aim to identify malicious users exactly, mainly by
applying the Sheahart and the CUSUM control charts to monitor
whether there are large and small changes in users’ daily
electricity consumptions, respectively. This phase is further
divided into a parameter estimation sub-phase and a malicious
user identification sub-phase, with details given below.

Parameter estimation: Let τ (hour) denote the length of a
reporting period of smart meters, which is usually set as 0.25
hours (i.e., 15 minutes) in applications. Each smart meter can
generate 24/τ electricity consumption readings every day. Let
yi(k, j) denote user i’s total electricity consumption on the
k-th day from period j. Technically, we have

yi (k, j) =

j+k
24
τ −1∑

t=j+(k−1)
24
τ

q (i, t). (12)

For notation simplicity, we in the following drop the subscript
i of yi (k, j). Since all users’ reported electricity consumptions

Algorithm 1 Electricity theft detection
Require: rj , q′i,j , fi,j , i ∈ U, j=j0, j0+1, · · · , j0+n0−1
Ensure: signals indicating whether there are malicious users in U

1: Initialize Sw̄ (0, j1) , l, hs, hc;
2: Compute w(j), j = j0, j0 +1, · · · , j0 +n0−1 by Equation (4),

which are then sub-grouped by every mw samples;
3: Compute µ̂w and σ̂w according to Equations (8) and (11),

respectively;
4: µ̂w̄ ← µ̂w, σ̂w̄ ← σ̂w√

mw
;

5: k ← 1, v ← 0, f lag ← 0;
6: while flag == 0 do
7: Sw̄ (k, j1)← Sw̄ (0, j1) , v ← v + 1;
8: while (v − 1)K1 < k ≤ vK1 do . Every K1 samples of w̄
9: Calculate w(j), j = j1+(k−1)mw, · · · , j1+kmw−1 by

Equation (4); and then calculate the average w̄(k, j1) according
to Equation (1);

10: if w̄(k,j1)−µ̂w̄
σ̂w̄

> hs then . Shewhart control chart
11: flag ← 1;. Indicate the existence of electricity theft
12: else . CUSUM control chart
13: Calculate Sw̄(k, j1) according to Equation (2);
14: if Sw̄(k, j1) > hc then
15: flag ← 1;
16: end if
17: end if
18: if flag == 1 then
19: Break;
20: else
21: k ← k + 1;
22: end if
23: end while
24: if flag == 0 then
25: All users are honest up to now and continue monitoring;
26: end if
27: end while
28: Perform Algorithm 2 to identify malicious users;

need to be examined, this does not impact the following dis-
cussions. Let y denote one user’s daily electricity consumption.
Then, y (k, j) can be regarded as the k-th sample of the process
variable y after period j.

In this paper, we assume that the process variable y
approximately follows a normal distribution. This is reasonable
based upon the following facts: (1) In [35], the authors
investigate a data set with 702 households and find that users’
daily electricity consumptions approximately follow a normal
distribution; (2) We explore the dataset in [36], which are
measurements of electricity consumptions in one household
with a one-minute sampling rate over almost four years. The
results are shown in Fig. 4. As can be seen, this user’s daily
electricity consumption also approximately follow a normal
distribution with a mean of 25.87 and a standard deviation of
10.36. In this way, the normal distribution assumption in the
Shewhart and the CUSUM control chart is satisfied.

To make the detector more robust and more practical (which
means that it works regardless of the distribution followed by
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Fig. 4. The histogram are obtained based on the dataset in [36]. It shows that
users’ daily electricity consumptions follow normal distribution with a mean
25.87 and a standard deviation of 10.36.

the process variable y), users’ daily electricity consumptions
are arranged into subgroups, each containing my elements. Let
ȳ denote the mean of a user’s daily electricity consumptions
in one subgroup. Let ȳ(k, j) denote the k-th sample of ȳ after
period j. Then, ȳ(k, j) can be calculated by Equation (1). Let
µy and σy denote the mean and the standard deviation of the
distribution followed by the process variable y, respectively.
Then, according to the central limit theorem [29], ȳ follows
a normal distribution with a mean µȳ = µy and a variance

σ2
ȳ =

σ2
y

my
.

Since µȳ and σȳ are usually unknown, we next focus on
how to obtain their unbiased estimation, denoted by µ̂ȳ and
σ̂ȳ, respectively. Assume that for any given user, we have
n1 periods of historical electricity consumptions starting from
period j2 and that all users are honest during these periods.
Then, for each user, we can obtain a total number of bn1τ

24 c daily
electricity consumptions, i.e., y (k, j2) ,∀k=1, 2, 3,· · · ,bn1τ

24 c.
Using these data, we can further calculate the subgroup
mean ȳ(k, j2),∀k=1, 2, 3,· · · ,b n1τ

24my
c. Afterwards, µ̂ȳ can be

calculated as the mean of sample values of ȳ [34]. Technically,
we have

µ̂ȳ =
1

b n1τ
24my

c

b n1τ
24my

c∑
k=1

ȳ(k, j2),∀i ∈ U.

We next focus on how to get σ̂ȳ . Let ỹ denote the difference
between the largest and the smallest values in one subgroup
of users’ daily electricity consumption. Let ỹ (k, j) denote the
k-th sample of ỹ after period j. Let dy denote the mean of the
distribution followed by the ratio of ỹ to σy , i.e., dy = E( ỹ

σy
).

The relationship between dy and my is the same as that between
dw and mw. In other words, if my = mw, we have dy = dw.
Thus, similar to the estimation of σ̂w̄ in Section IV-B, we can
obtain

σ̂ȳ =
σ̂y√
my

=
1
√
my

1

dy

1⌊
n1τ

24my

⌋
⌊
n1τ

24my

⌋∑
k=1

ỹ (k, j2).

Malicious user identification: Assume that the identification
process starts from period j3, with j3>j1. Then, from period
j3, every my days of users’ reported electricity consumptions
are arranged as a subgroup. Afterward, the subgroup means

ȳ(k, j3),∀k = 1, 2, · · · can be calculated. If some users commit
electricity theft, their daily electricity consumptions y tend to
get smaller, leading to the decrease of ȳ. Thus, we apply the
Shewhart and the CUSUM control chart to monitor whether
sample values of ȳ have a tendency to decrease.

Specifically, we apply the Shewhart control chart to capture
the moderate and large decrease of the sample values of ȳ. If

ȳ (k, j3)− µ̂ȳ
σ̂ȳ

< −hs,

the corresponding user is identified as a user launching LET
attacks.

Besides, we apply the CUSUM control chart to judge whether
there is a slight decrease in sample values of ȳ. Specifically,
we calculate Sȳ (k, j3) by Equation (2), with a negative sign
“−” put before the standardized term. If Sȳ (k, j3) > hc, the
corresponding user is identified as a user launching SET attacks.

We conclude the above strategies in Algorithm 2, where
M and H denote the set of malicious users and honest users,
respectively. The parameter estimation sub-phase is summarized
in lines 3 ∼ 6, and the malicious user identification sub-
phase is summarized in lines 7 ∼ 30. In Algorithm 2, we set
a user-defined parameter V (a positive integer) to limit the
maximum number of rounds of inspections to be performed
before determining whether a user is “malicious” or “honest”.
Within one round of inspection, at most K2 sub-groups of
users’ daily electricity consumptions are involved to calculate
the cumulative sum Sȳ (k, j3). If both the Shewhart and the
CUSUM control chart cannot detect reading anomalies within
one round of inspection, the detector resets the cumulative sum
Sȳ (k, j3) to its initial value and automatically goes to the next
round of inspection. If within V rounds of inspection, either
the Shewhart or the CUSUM control chart detects reading
anomalies, this user is identified as a malicious one; otherwise,
this user is identified as an honest user.

V. ALGORITHM ANALYSIS

In this section, we aim to analyze the efficiency of the
proposed detector. Since the proposed detector consists of
an electricity theft detection phase and a malicious user
identification phase, this goal can be achieved by analyzing
the efficiency of Algorithm 1 and Algorithm 2, respectively.
More specifically, this goal can be achieved by answering the
following two questions:
• Question 1: if malicious users set out to steal electricity,

how long does it take (on average) for the proposed
detector to signal the existence of reading anomalies?

• Question 2: if the proposed detector has detected the
existence of malicious users, how long does it take (on
average) for the proposed detector to identify whether a
user is malicious or not?

Since Algorithm 1 and Algorithm 2 have similar working
strategies, we can infer that analyses for answering these two
questions are similar. Thus, in this section, we explain in detail
the analysis for answering Question 1 but omit the analysis
for answering Question 2.

Based upon the following facts: (1) smart meters have
equal length of reporting periods; (2) one sample of w can
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Algorithm 2 Malicious user identification
Require: q′(i, j),∀i ∈ U, j = {j2, j2 +1, · · · , j2 +n1, · · · , j3, j3 +

1, j3 + 2, · · · } . users’ historical and newly reported readings
Ensure: M , H . the set of malicious users and honest users,

respectively

1: M ← ∅, H ← ∅;
2: Initialize Sȳ (0, j3) , l, hs, hc;
3: for each user in the community do . parameter estimation
4: Arrange every my days’ electricity consumptions into one

subgroup;
5: Calculate ȳ(k, j2) and ỹ (k, j2),∀k=1, 2, 3,· · · ,b n1τ

24my
c; and

then compute µ̂ȳ and σ̂ȳ;
6: k ← 1, v ← 0, f lag ← 0;
7: while v ≤ V and flag == 0 do
8: Sȳ (k, j3)← Sȳ (0, j3) , v ← v + 1;
9: while (v − 1)K2 < k ≤ vK2 do

10: Calculate ȳ(k, j3) with the k-th subgroup of user i’s
daily reported electricity consumptions;

11: if ȳ(k,j3)−µ̂ȳ
σ̂ȳ

< −hs then . Shewhart control chart
12: flag ← 1;
13: else . CUSUM control chart
14: Calculate Sȳ(k, j3) by Equation (2), with a nega-

tive sign “−” put before the standardized term;
15: if Sȳ(k, j3) > hc then
16: flag ← 1;
17: end if
18: end if
19: if flag == 1 then
20: Put this user into set M ;
21: Break;
22: else
23: k ← k + 1;
24: end if
25: end while
26: end while
27: if flag == 0 then
28: Put this user into set H;
29: end if
30: end for
31: Return M , H

be generated at a reporting period; (3) one sample of w̄ is
calculated based upon mw consecutive samples of w, Question
1 can be transformed into the following question:
• Question 3: if malicious users set out to steal electricity,

how many samples of w̄ (on average) should be involved
for the proposed detector to signal the existence of reading
anomalies?

We address Question 3 mainly by modeling the inspection
process from line 10 to line 17 in Algorithm 1 as a Markov
chain, explained as follows.

For convenience, we let

zk =
w̄ (k, j1)− µ̂w̄

σ̂w̄
.

(1) We first consider the case zk ≤ hs where the CUSUM
control chart works.

According to Equation (2), given the value of the present cu-
mulative sum Sw̄ (k, j1), the value of the future cumulative sum
Sw̄ (k + 1, j1) does not depend on the value of the past cumu-
lative sum Sw̄ (k − 1, j1) , Sw̄ (k − 2, j1) , Sw̄ (k − 3, j1) , · · · .
This implies that the inspection process of the CUSUM control
chart satisfies the Markov property [37]. Thus, it is reasonable

the proposed 
detector

k sz h CUSUM

Shewhart

states

0E

1TE 

1E

absorbing 
states

TE

1TE 

k sz h

Fig. 5. Analyzing the inspection process from line 10 to line 17 in Algorithm
1 with a Markov chain model.

to model the above inspection process as a Markov chain with
T + 1 states labeled E0, E1, . . . , ET , where T is a positive
integer and ET is an absorbing state1 [38].

The Markov chain modeling the inspection process of the
CUSUM control chart is established as follows: (a) First, we
divide the value range of the cumulative sum Sw̄ (k, j1), i.e.,
[0,+∞), into the following T + 1 intervals:

[
0, θ2

]︸ ︷︷ ︸
interval 0

,
(
θ
2 ,

3θ
2

]︸ ︷︷ ︸
interval 1

,

. . .,
(
iθ− θ

2 , iθ+ θ
2

]︸ ︷︷ ︸
interval i

, . . .,(hc−θ, hc]︸ ︷︷ ︸
interval T−1

, (hc,+∞)︸ ︷︷ ︸
interval T

, where θ =

2hc
2T−1 [38]. (b) Then, based upon the value of the cumulative
sum Sw̄ (k, j1), we associate the inspection process of the
CUSUM control chart to one state in {E0, E1, . . . , ET }.
Specifically, if Sw̄ (k, j1) ∈

[
0, θ2

]
, we say that the inspection

process is in state E0. If Sw̄ (k, j1) ∈
(
iθ − θ

2 , iθ + θ
2

]
, we say

that the inspection process is in state Ei, i = 1, 2, · · · , T − 1.
If Sw̄ (k, j1) > hc, we say that the inspection process is in
state ET . Once the Markov chain enters into the absorbing
state ET , the CUSUM control chart detects the existence of
malicious users.

(2) For the case zk > hs, according to the lines 10 ∼ 17
Algorithm 1, the Shewhart control chart immediately detects
the existence of malicious users. We regard this case as another
absorbing state, denoted by ET+1. By adding the absorbing
state ET+1 to the Markov chain of the CUSUM control chart,
we can model the whole inspection process applying the
CUSUM and the Shewhart control charts together as a Markov
chain with T+2 states E0, E1, . . . , ET , ET+1. As summarized
in Fig. 5, if zk ≤ hs, the Markov chain changes among states
E0, E1, . . . , ET ; otherwise, it enters into the state ET+1.

Let pi,j denote the probability for the Markov chain to
transition from state Ei to state Ej , where i = 0, 1, 2, · · ·T +
1, j = 0, 1, 2, · · ·T + 1. Then, we have

pi,0 =Pr (zk≤hs) Pr (Ei → E0) (13)

=Pr (zk≤hs) Pr
(
zk − l ≤ −iθ + θ

2

)
,

pi,j=Pr (zk≤hs) Pr (Ei → Ej)

=Pr (zk≤hs) Pr
(
(j−i) θ− θ

2≤zk−l≤(j−i) θ+ θ
2

)
,

pi,T =Pr (zk≤hs) Pr (Ei → ET )

=Pr (zk≤hs) Pr
(
(T − i) θ − θ

2 ≤ zk − l
)
,

pi,T+1 =Pr (Ei→ET+1) = Pr (zk > hs)=1−Pr (zk ≤ hs) ,

1An absorbing state of a Markov chain is a state that, once entered, cannot
be left.
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where i = 0, 1, 2, · · ·T − 1, j = 0, 1, 2, · · ·T − 1. Since
zk follows the standard normal distribution, given values
of hs, hc, l and T , the above transition probability can
be calculated. Particularly, for absorbing states ET and
ET+1, we have pT,T = 1 and pT+1,T+1 = 1. Let P∗ =
Pr (zk ≤ hs). Let Pi = Pr

(
iθ − θ

2 ≤ zk − l ≤ iθ + θ
2

)
. Let

Fi = Pr
(
zk − l ≤ iθ + θ

2

)
. Let P denote the transition

probability matrix of the Markov chain modeling the proposed
detector. Then, P can be written as in Fig. 6 (a).

( )
0 1 2 1 1

0 * 0 * 1 * 2 * * 1 * 1 *

1 * 1 * 0 * 1 * 1 * 2 *

2

1

1

                                                                                           

1 1
1

=

j T T T

j T T

j T

i

T

T

T

E E E E E E E

E P F P P P P P P P P P F P
E P F P P P P P P P P P
E

E

E
E

E

− +

− −

− − −

−

+

− −
−

P

 

 

 





( )
( )

( )

( )

2 *

* 2 * 1 * 0 * 2 * 3 * 3 *

* * 1 * 2 * * 1 * 1 *

* 1 * 2 * 3 * ( 1) * 0 * 0 *

1
1 1

1 1

1 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1

T

j T T

i i i j i T i T i

T T T j T

F P
P F P P P P P P P P P F P

P F P P P P P P P P P F P

P F P P P P P P P P P F P

−

− − − − −

− − − − − − − −

− − − − −

 
 − 
 − −
 
 
 − −
 
 
 − −


 

 

        

 

        

 

 

 





 

(a) The transition probability matrix before combining
states ET and ET+1
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(b) The transition probability matrix after combining states
ET and ET+1

Fig. 6. The transition probability matrix of the Markov chain modeling the
inspection process from line 10 to line 17 in Algorithm 1.

The following two events are independent: (1) the event that
the Markov chain changes from state Ei, i = 0, 1, · · · , T−1 to
state ET ; (2) the event that the Markov chain changes from state
Ei, i = 0, 1, · · · , T−1 to state ET+1. Thus, the probability that
the Markov chain changes from state Ei, i = 0, 1, · · · , T − 1
to an absorbing state (i.e., ET or ET+1) is as follows:

pi,T |T+1 = pi,T + pi,T+1,

where “|” denotes an OR operation. Thus, if we combine states
ET and ET+1 into one state (which means that the proposed
detector detects the existence of malicious users), the transition
probability matrix P in Fig. 6 (a) is transformed into the
transition probability matrix P′ in Fig. 6 (b). The matrix P′

has the following properties: (1) the summation of elements
in one row is equal to one; (2) the last row consists of zeros
except for the last element; (3) For the central T − 1 columns,
all elements along a line parallel to the main diagonal have
the same value.

Let Xi denote the number of samples of w̄ when the Markov
chain starts from Ei to reach one of the absorbing states ET

or ET+1 for the first time. Let λi denote the average of Xi.
Then, we have

λi=
∞∑
r=1

rPr (Xi = r)

=
∞∑
r=1

r
T−1∑
j=0

pi,j Pr (Xj = r − 1)

=
T−1∑
j=0

pi,j

[ ∞∑
r−1=0

(r−1) Pr (Xj=r−1)+
∞∑

r−1=0

Pr (Xj=r−1)

]

=
T−1∑
j=0

pi,j [λj + 1] =
T−1∑
j=0

pi,jλj + 1.

Let λ = [λ0, λ1, · · · , λT−1]
′. Let R denote the matrix

obtained from P′ by deleting the final row and column. Let I
denote the T × T unity matrix. Then, the above equation can
be written in the matrix form as

(I−R)λ = 1,

from which we can derive

λ = (I−R)
−1

1. (14)

Apparently, given values of hs, hc and l, different vectors
of λ can be obtained under different values of T according to
Equation (14).

Assume that we have initialize Sw̄ (k, j1) as a specific
value. Then, under different values of T , the Markov chain
modeling the inspection process may start from different states.
In other words, with a specific initial value of Sw̄ (k, j1), we
can obtain different pairs of (T, λi) for different values of
T . For example, assume that we have set hs = 3.5, hc = 5,
l = 0.5 and initialize the value of Sw̄ (k, j1) as 1.5. Then,
if T = 5, the intervals

[
0, θ2

]︸ ︷︷ ︸
interval 0

,
(
θ
2 ,

3θ
2

]︸ ︷︷ ︸
interval 1

, . . .,
(
iθ− θ

2 , iθ+ θ
2

]︸ ︷︷ ︸
interval i

,

. . .,(hc−θ, hc]︸ ︷︷ ︸
interval T−1

are
[
0, 5

9

]
,
(

5
9 ,

5
3

]
, · · · ,

(
35
9 , 5

]
. Since the

initial value of Sw̄ (k, j1) (i.e., 1.5) locates at the second
interval, the starting state of the Markov chain is E1.
According to Equation (14), when T = 5, we have
λ = [611.45, 607.24, 592.55, 548.67, 430.82]′. Thus, in
this case, we can obtain the following pair of (T, λi):
(5, 607.24). If T = 8, the above intervals become[
0, 1

3

]
,
(

1
3 , 1
]
,
(
1, 5

3

]
, · · · ,

(
13
3 , 5

]
. Since the initial value

of Sw̄ (k, j1) (i.e., 1.5) locates at the third interval,
the starting state of the Markov chain becomes E2.
According to Equation (14), when T = 8, we have λ =
[703.35, 701.56, 697.29, 688.19, 669.83, 633.70, 565.50, 451.76]′

In this case, we can obtain the following pair of (T, λi): (8,
697.29).

Then, at least three pairs of (T, λi) are used to fit the
following formula with the least square method:

λi = c0 +
c1
T

+
c2
T 2
.

In this way, the three constant coefficients c0, c1 and c2 can
be obtained. For example, in Fig. 7, we set hs = 3.5, hc = 5,
l = 0.5 and the initial value of Sw̄ (k, j1) as 1.5. With the
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Fig. 7. An example of applying the formula λi = c0 + c1
T

+ c2
T2 to fit with

at least three pairs of (T, λi), using the least square method. In this figure,
we set hs = 3.5, hc = 5, l = 0.5 and the initial value of Sw̄ (k, j1) as 1.5.

value of T ranging from 4 to 20, we obtain 17 pairs of (T, λi).
After we apply the above formula to fit these pairs of (T, λi),
we obtain c0 = 768.56, c1 = −232.97 and c2 = −2877.8.
Afterwards, the average number of samples of w̄ for the specific
initial value of Sw̄ (0, j1) can be estimated as the asymptotic
value of c0 + c1

T + c2
T 2 , i.e., c0. Then, we answered Question 3.

VI. EXPERIMENTS

In this section, we report the results of experiments, which
are conducted in Python 3.6 on an integrated development
environment platform - PyCharm Community Edition 2018.2.5.
We assume that users’ electricity consumptions are reported
every 15 minutes. Also, we assume that user i’s electricity
consumptions during one period approximately follow a normal
distribution with a mean ui and a standard deviation σi,
where i ∈ U . Specifically, the mean ui is randomly chosen
from interval [1, 2] and the standard deviation σi is randomly
chosen from interval [0.2, 0.4]. Users’ periodical electricity
consumptions are assumed to interfere with a noise that follows
a normal distribution with a mean of 0.2 and a standard
deviation of 0.3. The biases between the actual and the
estimated technical losses are assumed to follow a random
distribution with a mean of 0.8 and a standard deviation of 0.6.
In the experiments, we first generate a specific number of users.
Some of these users are set as honest users, and the others are
set as malicious users. Note that users’ electricity consumptions
following a normal distribution have no relationship with users’
reporting behaviors, i.e., whether they are malicious users or
not since users’ electricity consumptions are actual electricity
consumptions whereas being malicious a user or not is about the
user’s reporting behavior. For the honest users, their reported
electricity consumption is equal to the measured one. For
the malicious users, their reported electricity consumption is
less than the measured one, and the difference between a
malicious user’s measured and reported electricity consumption
is expressed in the units of σi. We set the parameters K1 = 100,
K2 = 120 and V = 1. Each piece of data in this section is
averaged over 40 times of repeated experiments.

A. False positive rate and false-negative rate

Detection accuracy is defined as the ratio of the number of
users correctly classified to the total number of users. In the real

world, we usually have many more honest users than malicious
users. In this case, if a detector simply classifies all the users
as honest, the detection accuracy is still high. This implies
that detection accuracy is not an appropriate metric to evaluate
the performance of electricity theft detection algorithms. Thus,
in this paper, we apply the following two metrics: (1) false-
positive rate (FPR) which is defined as the ratio of the number
of honest users that are mistakenly classified as malicious
users to the total number of honest users; (2) false-negative
rate (FNR) which is defined as the ratio of the number of
malicious users that are mistakenly classified as honest users
to the total number of malicious users.

In this subsection, the experiment settings are stated as
follows: (1) In the user community, there are 100 users in
total, among which 25 users are randomly set as honest users,
and the remaining 75 users are set as malicious users. For the
malicious users, we investigate the cases where their stolen
amount of electricity is set as 0.05σi, 0.07σi, 0.09σi, and
0.11σi, respectively; (2) We set µw = 0.8 and σw = 0.32; (3)
In Phase I (i.e., electricity theft detection), we set hs = 3.5,
hc = 5, l = 0.5, mw = 5, K1 = 100; and we set the initial
value of Sw̄ (k, j1), i.e., Sw̄ (0, j1), as 0; (4) In Phase II (i.e.,
malicious user detection), if not otherwise stated, we set hs =
3.5, hc = 5, l = 0.5, my = 5, K2 = 120; and we set the
initial value of Sȳ (k, j3), i.e., Sȳ (0, j3), as 0.

We investigate how FPR and FNR change when parameters
hs, hc, l, Sȳ (0, j3) take different values in Phase II. We report
the experiment results regarding false positive rates (FPR)
for the honest users in Fig. 8. As shown in Fig. 8(a), with
the increase of the number of subgroups of users’ historical
daily electricity consumption for parameter estimation in Phase
II, FPR tends to decrease. This is consistent with the fact
that parameters µȳ and σȳ can be estimated more accurately
with more subgroups of users’ historical daily electricity
consumptions. In Fig. 8(b) ∼ Fig. 8(e), we assume that
we have three subgroups of users’ historical daily electricity
consumptions for parameter estimation. From Fig. 8(b), we
can see that when the value of l increases from 0.1 to 0.9, the
FPR decreases from 0.35 to almost 0. In Fig. 8(c), we can
observe that the FPR has a tendency to increase with the value
of Sȳ (0, j3). From Fig. 8(d) and Fig. 8(e), we can observe
that FPR has a tendency to decrease with values of hs and hc,
respectively.

We report the experimental results regarding false negative
rates (FNR) in Fig. 9.As shown in Fig. 9(a), Fig. 9(c), Fig.
9(d), and Fig. 9(e), for a given amount of users’ stolen amount
of electricity, FNR does not change a lot with the increase of
the following factors: (a) the number of subgroups of users’
daily electricity consumptions for estimating µȳ and σȳ, (b)
the initial value of Sȳ (k, j3), (c) the value of hc, (d) the value
of hs, and e) the value of l. In contrast, we can observe from
Fig. 9(b) that for a given amount of users’ stolen amount of
electricity, FNR increases monotonically with the value of l.
Moreover, given any of the above five factors, i.e., factors (a)
∼ (e), FNR decreases with the increase of the stolen amount
of electricity.
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Fig. 8. Excrement results regarding how false positive rates change with the
following parameters: (a) the number of subgroups of users’ historical daily
electricity consumption for estimating µȳ and σȳ ; (2) l; (3) the initial value
of Sȳ (k, j3), i.e., Sȳ (0, j3); (4) hs; (5) hc.

B. Efficiency

In this subsection, we evaluate the performance of the
proposed detector in terms of efficiency. Based upon the
discussions in Section V, we specifically investigate the
following questions: (1) If malicious users steal electricity, how
many samples of w̄ (on average) should be involved for the
proposed detector to signal the existence of reading anomalies?
(2) If the proposed detector has detected the existence of
malicious users, how many samples of ȳ (on average) should
be involved for the proposed detector to identify whether a
user is malicious or not? Next, We report experimental results
regarding the number of samples of w̄ in Phase I (i.e., the
electricity theft detection phase) and the number of samples
of ȳ in Phase II (i.e., the malicious user identification phase).

In this subsection, the experiment settings are stated as
follows: (1) we generate 200 users in the community; (2) If
the proposed detector can detect the existence of one malicious
user, it must detect the existence of multiple malicious users.
Thus, we assume that there is only one malicious user in the
community. The amount of stolen electricity of this malicious
user ranges from 0.1σi to σi. (3) We set µw = 0.8 and σw =
0.32; (4) We set K1 = 100,K2 = 120, V=1 and mw = my =
5; (5) If not otherwise stated, in both Phase I and Phase II, we
set hs = 3.5, hc = 5, l = 0.5, and set the values of Sw̄ (0, j1)

and Sȳ (0, j3) as 0.
We report how parameters hs, hc, l and the initialized value

of Sw̄ (k, j1) and Sȳ (k, j3) (i.e., Sw̄ (0, j1) and Sȳ (0, j3))
impact the average number of samples of w̄ and the average
number of samples of ȳ in Fig. 10, Fig. 11, Fig. 12, and Fig.
13, respectively. As shown in Fig. 10 ∼ Fig. 13, in either
phase I (i.e., the electricity theft detection phase) or phase
II (i.e., the malicious user identification phase), when given
any of the following four parameters: (1) hs, (2) hc, (3) l, (4)
Sw̄ (0, j1) and Sȳ (0, j3), the number of samples of w̄ (or ȳ)
decreases quickly with the increase of the amount of users’
stolen electricity. Particularly, a smaller hs implies a smaller
amount of users’ stolen electricity when the number of samples
of w̄ (or ȳ) reaches 1. On the whole, for any given amount of
stolen electricity, a larger hs, hc, or l implies a greater number
of samples of w̄ (or ȳ), while a larger Sw̄ (k, j1) and Sȳ (k, j3)
imply a smaller number of samples of w̄ (or ȳ). On the whole,
in all figures of Fig. 10 ∼ Fig. 13, when the number of samples
of w̄ (or ȳ) is greater than 1, it is the CUSUM control chart
that really works in the proposed detector. When the number
of samples of w̄ (or ȳ) is 1, it is the Shewhart control chart
that really works in the proposed detector.

C. Comparison of the proposed detector with baseline algo-
rithms

In Fig. 14, we generate 200 users in the community, among
which 40 users are randomly set as malicious users, and the
remaining 160 users are set as honest users. For the malicious
users, their amount of stolen electricity ranges from 0.1σi to
1.4σi. We compare the proposed detector with the following
two baseline algorithms: (1) baseline algorithm 1 which applies
only the Shewhart control chart to analyze the above readings
or measurements; (2) baseline algorithm 2 which applies only
the CUSUM control chart to analyze the above readings or
measurements. When the Shewhart and the CUSUM control
charts are independently used, we set hc = 5, hs = 3, l = 0.5,
Sw̄ (0, j1) = 0 and Sȳ (0, j3) = 0, as recommended in [24]. For
the proposed detector where the Shewhart and the CUSUM
control charts are combined, we set hs = 3.5, hc = 5 and
l = 0.5, as recommended in [39]. For the proposed detector,
the values of Sw̄ (0, j1) and Sȳ (0, j3) are set as 0 and hc

2 = 2.5,
respectively. The amounts of malicious users’ stolen electricity
are expressed in the units of the standard deviation σw and σi in
the electricity theft detection and malicious user identification
phase, respectively, as shown on the x-axis.

From Fig. 14(a), we have the following observations: (1)
For each detector, the number of samples of w̄ decreases fast
with the increase of the amount of the malicious user’s stolen
electricity and finally converges at 1. (2) When the amount of
stolen electricity is less than 2.8σw, the number of samples of
w̄ of baseline algorithm 1 is much larger than the detectors
applying the CUSUM control chart, and is even too large to
be plotted in Fig. 14(a). (3) For the baseline algorithm 2 and
the proposed detector with Sw̄ (0, j1) = 0, we find that given
any amount of stolen electricity less than 2.4σw, they have
almost the same number of samples of w̄. When the amount of
stolen electricity is between 2.4σw and 5.8σw, the number of
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Fig. 9. Experiment results regarding how false negative rates (FNR) change with the following parameters: (a) the number of subgroups of users’ historical
daily electricity consumption for estimating µȳ and σȳ ; (2) l; (3) the initial value of Sȳ (k, j3), i.e., Sȳ (0, j3); (4) hs; (5) hc.

�����
������	�����
���		�	
�

�

��

��

��
�
�
�
�
�
�
�
�

������

# o
f sa

mp
les

 of
 w

 t h e  a m o u n t  o f  s t o l e n  e l e c t r i c i t y

������

������
������

������
������

������

������
������

(a) Phase I: electricity theft detection

�����������������	��
��� �
�

�

�

�




��

��
�
�
�
�
�
�
�
�
�

������

# o
f sa

mp
les

 of
 y

 t h e  a m o u n t  o f  s t o l e n  e l e c t r i c i t y

������

������
������

������
������

������

������
������

(b) Phase II: malicious user identification

Fig. 10. Experiment results regarding how the parameter hs affects the average number of samples of w̄ in Phase I (or ȳ in phase II)
. Note: The amount of stolen electricity are measured in the units of the standard deviation σw (or σi).
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Fig. 11. Excrement results regarding how the parameter hc affects the average number of samples of w̄ in Phase I (or ȳ in phase II). Note: The amount of
stolen electricity are measured in the units of the standard deviation σw (or σi).
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Fig. 12. Experiment results regarding how the parameter l affects the average number of samples of w̄ in Phase I (or ȳ in phase II). Note: The amount of
stolen electricity are measured in the units of the standard deviation σw (or σi).
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Fig. 13. Experiment results regarding how the parameter S0 affects the average number of samples of w̄ in Phase I (or ȳ in phase II). Note: The amount
of stolen electricity are measured in the units of the standard deviation σw (or σi). In Fig. 13(a) and Fig. 13(b), S0 represents Sw̄ (0, j1) or Sȳ (0, j3),
respectively.
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samples of w̄ of the baseline algorithm 2 is greater than that of
the proposed detector with Sw̄ (0, j1) = 0. When the amount
of stolen electricity is larger than 5.8σw, the average number
of samples of w̄ is equal to 1. (4) For the proposed detector
which applies the Shewhart and the CUSUM control charts
together, the number of samples of w̄ is obviously smaller in
the case Sw̄ (0, j1) = 2.5 than in the case Sw̄ (0, j1) = 0.

In Fig. 14(b), we show the curves of the number of samples
of ȳ in phase II against the amount of stolen electricity for
different algorithms. These curves have a similar trend to those
in Fig. 14(a), and hence similar conclusions can be reached.
Detailed analysis regarding Fig. 14(b) is omitted.

To sum up, we have the following conclusions: (1) when
the amount of stolen electricity is very small, the detector
which applies only the Shewhart control chart is less efficient
than those applying the CUSUM control charts; (2) When the
amount of stolen electricity is moderate, the detector which
applies only the CUSUM control charts has a lower efficiency
than those applying the Shewhart control charts; (3) For the
detectors which apply both the Shewhart and CUSUM control
charts, when the amount of stolen electricity is large, it is the
Shewhart control chart that really works to detect the existence
of reading anomalies; (4) For the detectors which apply both the
Shewhart and CUSUM control charts, the efficiency is higher
in the cases Sw̄ (0, j1) > 0 than in the cases Sw̄ (0, j1) = 0.

D. Comparison of the proposed detector with existing algo-
rithms

In Fig. 15, we compare the proposed detector with two
existing electricity theft detection techniques in terms of the
false-negative rate (FNR). We generate a total number of 200
users in the community, among which 40 users are randomly
set as malicious users, and the remaining users are set as honest
users.

In Fig. 15(a), we compare it with one machine learning-based
detection technique in [14], in which the basic idea is to apply
the k-means clustering method and the support vector machine
(SVM) classifier together to analyze whether users’ electricity
consumption patterns are abnormal. This method is termed as
“k-Means+SVM” in Fig. 15(a). Let α(i, j) denote the ratio of
reported readings and measured readings of user i at period j,
i.e., α(i, j) = q′(i,j)

q(i,j) . Then, for honest users, we have α(i, j) =

1; for malicious users, we have α(i, j) ∈ [0, 1). This idea is
similar to [41]. In Fig. 15(a), we assume that the ratio α(i, j) of
malicious users ranges from 0.76 to 0.98. With the increase of
α(i, j), which implies that the reported readings of malicious
users are more close to their actual electricity consumption,
the FNR of the “k-Means+SVM” method increases rapidly.
Specifically, when 0.76 < α(i, j) < 0.9, the FNR of the “k-
Means+SVM” method increases approximately linearly from
almost zero to one. When α(i, j) ≥ 0.9, the FNR of the
“k-Means+SVM” method remains at 1. As for the proposed
detector, when α(i, j) ≥ 0.96, the FNR is lower than 0.05;
when α(i, j) = 0.97, the FNR is about 0.2; when α(i, j) =
0.98, the FNR is about 0.4. To sum up, when the value of α(i, j)
ranges from 0.76 to 0.98, the FNR of the proposed detector is
much lower than that of the “k-Means+SVM” method in [14].

In Fig. 15(b), we compare the proposed detector with one
measurement mismatch based detection technique, i.e., the
Adaptive Binary Splitting Inspection (ABSI) algorithm [40],
in which the basic idea is to leverage a group testing method
to locate malicious users in smart grids. We assume that
users’ actual technical loss is 6% of their actual electricity
consumptions, i.e., f(i, j) = 0.06q(i, j). Furthermore, we
assume that the ratio of user i’s estimated technical loss to
actual technical loss at period j is between 0.9 and 1.1, i.e.,
f̃(i,j)
f(i,j) ∈ (0.9, 1.1). Among the 40 malicious users, there are 2 to
18 malicious users launching SET attacks. For these malicious
users, we assume that the amount of their stolen electricity is a
random number between 0.02f̃ (i, j) and 0.14f̃ (i, j). For other
malicious users, we assume α(i, j) ∈ (0.1, 0.8). As shown
in the figure, with the number of malicious users launching
SET attacks ranging from 2 to 18, the FNRs of both the
ABSI algorithm and the proposed detector increase. However,
regardless of the number of malicious users launching SET
attacks, the FNR of the proposed detector is always much
lower than that of the ABSI algorithm.

VII. CONCLUSIONS

In this paper, we investigate the issue of electricity theft
detection. To address the limitation that existing detection
techniques can only detect Large-amount Electricity Theft
(LET) attacks, in this paper, we propose a detector that can
also detect Small-amount Electricity Theft (SET) attacks. Since
the Shewhart and the CUSUM control charts can effectively
detect large changes and small changes in the process, they
are applied in the proposed detector to detect LET and SET
attacks, respectively. The proposed detector consists of two
phases: (1) an electricity theft detection phase which aims to
detect the existence of electricity theft timely; (2) a malicious
user identification phase which aims to identify malicious
users exactly. In both phases, the above two control charts
are jointly used to analyze users’ reported readings and the
central observer meter’s measurements. We also analyze the
efficiency of the proposed detector, mainly by modeling the
detection process as a Markov chain. Extensive experiments
are conducted to evaluate the proposed detector, and the results
show that it has good performance in terms of several metrics.
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