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Abstract—Due to the advantages of being low cost and
low power consumption, pyroelectric infrared sensors are
widely employed in many applications, such as target loca-
tion and tracking. In such applications, reference structure
which is used to modulate views of binary sensors can
help improve spatial resolutions by segmenting monitoring
spaces into many cells which are identified by states (called
signatures). A spatial resolution determines localization or
tracking accuracy, which depends on the sizes, the shapes,
and the signatures of the cells, and is drastically impacted
by deployment of sensors and reference structure. However,
in order to obtain a better deployment formation and a better
spatial resolution, researchers have to spend lots of time to
deploy and measure the deployment results of cells (such as their locations, sizes, shapes, and signatures), i.e., a huge
amount of measurements which cost time and money in practice. Hence, in this paper, we propose a tool to visually
and efficiently represent and analyze the deployment formation and spatial resolution. Generally, the location of a cell is
represented by a list of vertices scattered in a cartesian coordinate system and can help researchers get its size, shape,
and signature. A cell reconstruction algorithm is proposed to reconstruct cells generated by the deployment formation
in which lists of vertices are generated by regarding cells as shortest path rings. We further provide some theoretical
analysis and computational complexity analysis of the proposed algorithm. We conduct experiments using our tool to
study sensor efficiency and spatial resolution easily and effectively.

Index Terms— Pyroelectric infrared (PIR) sensor array, reference structure, cell and signature, shortest path ring.
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I. INTRODUCTION

SPACE monitoring is one of the most typical applications of
wireless sensor networks, including object tracking, habi-

tat monitoring, atypical behavior detection, etc [1]. Pyroelec-
tric infrared (PIR) sensors are increasingly attracting attentions
in these fields because of their low cost, low power consump-
tion, good privacy protection, and robustness to interference
from non-human infrared sources. A PIR sensor works by
detecting changes of infrared radiation. When a warm object,
such as a human, enters into the monitoring space of the PIR
sensor, the warm object triggers a small signal fluctuation with
infrared lights that it emits. This signal fluctuation, which is
amplified and conditioned in the signal conditioning circuit,
makes the PIR output 1; otherwise, the PIR outputs 0 [2].
However, due to the fact that binary passive sensors output
either 0 or 1, PIR sensors can neither distinguish absolute
locations nor identify the number of persons in a Field of
Interest (FOI) [3]. It also cannot provide enough information to
illustrate accurate trajectories of moving objects [4]. Reference
Structure Tomography (RST) is applied to enhance sensor
spatial awareness by segmenting a monitoring space into
different cells. The term ‘reference structure’ is first proposed
in computational imaging systems [5], [6]. An RST based
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system consists of more than one 3D reference structures
(called modulators), placed in between the monitoring space
and sensors [5], [6]. Reference structures or modulators are
opaque masks made of plastic materials. They segment the
monitoring space in front of them into regions (called cells)
that are either visible or invisible to a sensor. Fusing the data
of different sensors, researchers can obtain the motion features
(such as location and trajectory) and judge behavioral states of
an object rather than only judge the occurrence of the object
in the monitoring space [7]. Hence, RST is said to extend
the application scenarios of PIR sensor arrays to low-level
spatiotemporal properties (namely: presence, count, location,
and tracking) and behavioral properties (namely: pose, gait,
and behavior) by modulating the sensor field of view, and
creating overlapping detection cells [9].

However, RST also makes the deployment of PIR sensors
much more complex. Not only do researchers have to study
the number, locations, and shapes of modulators, but also they
have to study the amounts, shapes, and signatures of cells
generated by modulators. Furthermore, researchers have to put
the sensors in places and then measure the locations, sizes,
shapes, and signatures of cells. These take a lot of measure-
ments, but may not be able to achieve a desired deployment
effect. If a deployment formation (e.g., the number of sensors,
the number, locations, and shapes of modulators, etc.,) is
changed, people need to re-measure those. This wastes a lot of
time and money. We believe that an automatical and intelligent
tool (proposed in this paper) which can automatically calculate
the deployment results and present the results simply and
intuitively is necessary. Such a tool which works correctly
and efficiently can save a lot of time, manual measurement
cost, and unnecessary spending of purchasing sensors.

This paper proposes a tool to help researchers coping
with the measurement problems induced by modulators.
Researchers can use it to acquire deployment information
without deploying sensors and reference structure in practice.
For instance, they can get the vertex coordinates and signature
of each cell through the tool in a computer. With the tool,
researchers can adjust their deploy plans (such as, adjusting
locations of sensors or modulators, changing the number of
sensors, or changing the number of modulators in reference
structure) and achieve better results easily and effectively. The
contributions of this paper can be summarized as follows:

1) We propose and implement a tool to automatically
obtain useful information, such as signatures and vertices
of cells, based on the input parameters such as locations
of sensors, locations of modulators, the number of sensors,
and the number of modulators in reference structure, etc.
A cell reconstruction algorithm is proposed to reconstruct
cells generated by the deployment formation in which lists
of vertices are generated by regarding cells as shortest path
rings. In the proposed tool, cells are represented by cycles
of vertices and constructing a vertex cycle is the same as a
shortest path ring problem.

2) We further provide some theoretical analysis and com-
putational complexity analysis of the proposed algorithm.
We prove that an upper bound of computational complexity
of the algorithm is O(m6log2m), under the condition that

each sensor has at least one modulator to modulate its view,
i.e. m ≥ n, where m and n denote the numbers of modulators
and sensors, respectively.

3) We define two novel metrics as follows. Let d and u
denote the discrimination degree of cells and the utilization
ratio of signatures, respectively, where the discrimination
degree is defined as the ratio of the number of non-repetitive
signatures to the total number of cells and is used to appraise
the spatial resolution; and the utilization ratio is defined as
the ratio of the number of non-repetitive signatures to the
maximum number of signatures in theory and is used to
appraise the sensor efficiency. Such two metrics can help
researchers to analyze and improve the spatial resolution
and sensor efficiency of a deployment formation. Commonly,
spatial resolution is considered prior to sensor efficiency since
in order to get a better spatial resolution, researchers may
sacrifice the sensor efficiency (i.e. may allow u to have a
relative smaller value). Hence, we expect the values of d and u
to be as large as possible. Experiment results show that the tool
can be used to analyze spatial resolution easily and efficiently.
To our knowledge, there are no metrics in the literature for
these kinds of sensor arrays before this paper and most of the
published papers about sensor arrays are for applications.

4) However, in our experiments using our tool, we count the
actually utilized signatures to be |N | = n2−n+2 (n > 3), and
find that seeking the most number of cells is not an appropriate
way to segment the monitoring space. When achieving the
maximum number of cells, the d value is around 0.5 in
our experiments, and this means almost half of the cells are
indistinguishable, where if some cells have the same signature,
we call them “indistinguishable”. Hence, some new algorithms
should be designed to make the value of d as large as possible
under the condition d ≤ 1. Besides, the sensor efficiency
approaches to 0 as the number of sensors increases. Hence,
the number of sensors should be as small as possible to
attain a good sensor efficiency. However, the dilemma is that
the more sensors there are, the better the spatial resolution.
Hence, a good way to segment monitoring space is to design
new algorithms satisfying the following three conditions: 1) it
generates as many cells as possible; 2) each cell has a unique
signature; 3) under conditions 1) and 2), it improves sensor
efficiency as much as possible.

The rest of this paper is organized as follows. Section II
presents related works of this paper. Section III gives the prob-
lem definition. Section IV presents the deployment formation
and preprocess and the cell reconstruction of the tool in detail.
Section V provides theoretical and computation complexity
analysis. Section VI provides experimental results. Finally,
we conclude this paper in Section VII.

II. RELATED WORKS

Related works of RST with PIR sensors are summarized
as two categories: 1) applications on human motion (tracking
and recognition) [10], [11] and 2) fundamental theory research
on RST and monitoring space segmentation. We focus on
fundamental theory research on RST in this paper.

Preliminary RST fundamental theory studies include multi-
dimensional imaging, data-efficiency sensing, direct estimation
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of object size, and principles and approaches in the design
and usage of RST in object analysis. The authors in [5], [12]
explore transformation matrixes between an object space
and states of sensor arrays with RST in imaging systems
to measure a small object in an object space. In [12],
the authors implement Hardmard matrix (constructed by states
of sensors) as transformation over a range of angular per-
spectives to demonstrate the feasibility of using RST to
monitor object space. In [5], the authors utilize multi-angular
view two-dimensional imaging generated by occlusion of RST
to reconstruct a 3D target object in images. Hence, their
studies can be regarded as the foundation of object activity
recognition.

The authors in [13] define sensor efficiency formulation
based on the number of distinguishable source states and the
number of measurements required to estimate a source state
and deign a two-dimensional RST with coded apertures in a
pyroelectric motion tracking system to detect source motion in
one of the 15 cells uniformly distributed over a 1.6m × 1.6m
domain using 4 pyroelectric detectors. The authors in [14]
show how to predict the size of an uniform-brightness object
and how to achieve complex shape recognition via determining
the higher moments of the statistics of the RST measurement;
they also provide a probability model between RST and the
measurement states, and obtain the nth order statistics of
measurements and demonstrate the dependance of moments
of measurement states and their variance on an object area for
RST based sensors. The authors in [6] explore the potential of
RST for the purpose of accelerating data acquisition and sim-
plifying temporal correction, and present a geometric model of
RST, referring to a mathematic model form of computational
imaging systems, to use the characteristic functions of cells
as basis functions to limit the amount of deployed sensors;
they also discuss the effects of different cases of dimensions
of object space and measurement space on the geometric
model. The authors in [15] study a simple model consisting of
geometric radiation filed propagation and opacity-based field
modulation; they illustrate the physical constraints on realiz-
able mapping by bounding the number of distinct signatures
that can be realized for a particular RST geometry; they also
prove a almost tight bound on the number of distinct signatures
and illustrate the limits on the complexity of signature fields
induced by RST and binary sensors.

The authors in [16] explore fundamental performance limits
of tracking a target in a two-dimensional field of binary sensors
and design algorithms that attain those limits; they propose a
spatial resolution upper bound of binary sensors and use a
piecewise linear approximation to estimate the true path of
the target within the spatial resolution; moreover, the relative
error in velocity estimation is constructed to solve the problem
of preferring a path that uses a small number of segments as
opposed to the one that uses a large number of segments. The
authors in [17] study the optimal deployment of binary sensors
by partitioning sensors into two sub-regions: omni-directional
and directional static binary sensors; they compute the upper
bound on the number of unique cells, which are cells having
common edges with FOI; they also propose an algorithm to
deploy sensors within FOI in which the number of unique cells
is asymptotically equivalent to the upper bound.

The authors in [18], [19] explore that most signatures can
be achieve with RST; they show that the maximum number of
signatures in a sensor network with n binary sensors is 2n and
that it can be achieved by n modulators under some assump-
tions; furthermore, they prove that the maximum number value
is subject to the number of modulators [18]; besides, they
explore a series of bad sensor system deployments to be
avoided, where the number of signatures are relatively small
or minimum. They also study the size of cells and present
a sensor system deployment where the size of cells can be
controlled, no matter how small it is [19]. They do a survey of
RST research history from the computational imaging system
(in a mathematical way) to some representative applications
and also give some fundamental theory bounds on monitoring
space segmentation.

There are many benefits of using sensor arrays rather than
using cameras. First, the senors are cheap and light-weight
(such as $1 each) [11]. Second, the sensors are stealth. Third,
the system with the sensors can automatically record the
locations, movements, and tracks of living objects, whereas
cameras need very complex pattern recognition programs
to identity and track living objects and still are not very
accurate without human intervention. In other words, even
though cameras can record the videos, it is very difficult to
understand what are going on in the videos without human
intervention [18].

In this paper, we attempt to eliminate the gap between
theoretical studies and applications of RST by presenting
results of theoretical research visually using our tool. The
proposed tool can help researchers in acquiring the vertex sets
of cells, shapes of cells, and signatures easily and efficiently
since the number, structure, and distribution of cells are of
profound interest to the design and data analysis of a sensor
system. Based on our knowledge, there isn’t either such an
existing tool or a paper in the literature to explain how to
build such a tool.

III. PROBLEM DEFINITION

A. Definitions and Assumptions

We focus on the problem of FOI segmentation using an
arbitrary number of sensors and modulators to investigate cells
of FOI and their signatures. Modulators, used to modulate
the view of sensors, work as reference structure. Assume that
all of the modulators are the same size and sensors have the
same device parameters. FOI is a four edges polygon and these
four edges of the polygon called as boundary lines of FOI.
Applications of the FOI include monitoring a museum room,
monitoring a government room, etc. Our proposed methods
are not limited by the shape of the FOI.

As illustrated in Fig. 1, a sensor deployment region is an
annular region between the two circles with two radiuses Rsi

and Rso and a modulator deployment region is an annular
region between the two circles with two radiuses Rmo and
Rmi , where ‘i’ in ‘mi’ and ‘si’ means the inside circle and
‘o’ in ‘mo’ and ‘so’ means the outside circle. Sensors and
modulators are scattered inside two limited annular sensor and
modulator regions, respectively, surrounding an FOI which is
a field or region monitored by sensor and modulator arrays,
where warm objects appear and disappear. In the sensor
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Fig. 1. Sensor and modulator deployments.

Fig. 2. Segment FOI with 3S and 3M (S: Sensor; M: Modulator).

(or modulator) region, locations of sensors (or modulators)
can be adjusted to achieve required deployment results. Edge
light is an infrared light which cuts across an FOI, is emitted
by a warm object, and is tangent to a modulator. Since the
distance between a sensor and its modulator is very small,
the infrared lights emitted by a warm object in the subregion
between two edge lights (for instance, the subregion between
l1 and l2 shown in Fig. 1) cannot be received by the sensor
SC1. On this perspective, edge lights can be taken as bounds
of the FOV of a sensor. If a warm object locates in an FOI,
it emits infrared rays to every direction. Two of the infrared
rays (not for the object) are tangent to a modulator and sensed
by a PIR sensor behind the modulator as illustrated in Fig. 1.
The straight trajectories of these two rays are edge lights. Edge
lights intersect with each other and intersect with boundary
lines of FOI generating vertices. A boundary lines of an FOI
generate vertices too. An edge is defined as two vertices, which
are located on the same edge light or boundary line of FOI,
and no vertices located between them. Such two vertices are
two endvertices of the edge. Consequently, an edge light may
contain more than one edges. Two vertices are neighbors,
if they are two endvertices of an edge. Two distinct edges
are adjacent if they have an endvertex in common. In this
paper, vertex and endvertex will be used indiscriminately.

A subregion of an FOI without any edge light cutting across
it is defined as a cell. As shown in Fig. 2, the pentagon where
a point P locates is a cell, where point is used to describe
a certain location inside a cell. Similar to cycle in graph
theory [20], a cell might be signified by its cyclic sequence of
vertices. There are two methods to represent a cell: 1) using

its edge set, e.g., C = {e1, e2, e3, e4}; 2) using its vertex
cycle, e.g., C = v1v2v3v4v1. Hence, the problem of obtaining
cells in an FOI is to acquire their vertices. Our proposed cell
reconstruction method to acquire vertices of each cell. Based
on this method, the tool is proposed.

Signature is used to code and identify cells [18], [19]. For
any point P in an FOI in Fig. 2, if it is visible to a sensor,
the sensor will mark as 1; otherwise, the sensor will mark 0.
The value of point P marked by sensor si is denoted as fi (P).
We have fi (P) = 1 if P is visible to si and fi (P) = 0 if P is
invisible to si . Base on [18], [19], we have a formal definition
of signature as follows.

Definition 1: The signature of a cell is a binary sequence
denotes as f (P), which is a concatenation of n digits of fi (P),
i = 1 · · · n as follows:

f (P) = fn(P) fn−1(P) · · · f1(P), (1)

where fi (P) is the value of the i -th digit, and n is the number
of sensors deployed around the FOI.

As illustrated in Fig. 2, point P in the FOI is visible
to sensors s2 and s3, but invisible to sensor s1. Conse-
quently, we have f3(P) = 1, f2(P) = 1, and f1(P) = 0.
From equation (1), the signature of P is f (P) = 110.
We also observe that the FOI is segmented into 19 cells
as indicated as C1, C2, . . . , C19 in Fig. 2 and |C| = 19.
In Fig. 2, the cells form a set of 8 signatures denoted as
N = {000, 001, 010, 100, 011, 101, 110, 111} and |N | = 8.
Each cell has a signature Si = f (P) ∈ N , S = {S1, S2 . . . S19},
and |S| = 19. Since there are more cells than signatures,
different cells may have the same signature.

B. Problem Statement

Spatial resolution and sensor efficiency are two predominant
problems in a surveillance system with binary sensor arrays.
Spatial resolution determines the accuracy of object tracking
and localization. Sensor efficiency is used to avoid waste
of sensors. In this paper, we attempt to design a tool to
help researchers visually and efficiently observe experiment
results and study spatial resolution and sensor efficiency. The
proposed tool is to acquire C and S with the following 3 major
questions.

Problem 1: how to acquire the data generated by a deploy-
ment formation is our first problem. Generally, the data con-
tains cell vertices, cell signatures, cell shapes, and cell sizes.
The predominant data are cell vertices, with which we can get
cell shapes and cell sizes easily. Moreover, cell signatures are
another important problem, which not only need cell vertices,
but also need the data of deployment formation. Hence, this
paper focus on getting cell vertices and cell signatures.

Problem 2: Since the maximum number of cells is 2n2 + 1
(under the condition that each sensor is modulated by only
one modulator) [17], how to get all the cell vertices of
each cell quickly and correctly is our second problem. Since
reconstructing cells in the FOI is a combinatorial problem and
as the increment of n and m, the problem becomes much more
complex, we aim to completing the cell reconstruction work
as fast as possible in polynomial time. In order to solve
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Fig. 3. The function structure of utilizing the CRSA Tool.

this problem, the computation complexity of the designed
algorithm should be achieved with its lower bound.

Problem 3: We aim to studying spatial resolution and sensor
efficiency of deployment formation. Then, how to measure
the deployment results and guide researchers to get better
deployment formation is our third problem. Since deployment
formation using RST segments a monitoring space into many
different cells in shapes and sizes, conventional spatial resolu-
tion and sensor efficiency calculation formulations are unap-
plicable. New metrics to judge or calculate spatial resolution
and sensor efficiency should be designed.

IV. THE TOOL

Deployment formation is to design numbers and locations
of sensors and modulators based on a monitoring purpose
(intrusion detection, localization, tracking, etc.). When a
deployment formation is designed, a cell reconstruction and
signature acquisition (CRSA) tool is used to analyze and
adjust deployment formation with experiments. As illustrated
in Fig. 3 1, the CRSA tool consists of four parts: deployment,
preprocessing, the core of CRSA, and experiment analysis.

A. Step 1: Deployment

Deployment is to deploy sensors and modulators at some
certain places. Sometimes, shapes of modulators are designed
differently [7], [8], [10], [11]. Let n, m, and Rm denote the
number of sensors, the number of modulators, and the radius of
modulators, respectively. Sensors and modulators are assumed
to be points and disks, respectively, and are placed on the n
equal division points of circles with radiuses Rsi and Rmi ,
respectively, as illustrated in Fig. 1. Coordinates of sensors
and modulators are stored in sets SC = {SC1, SC2 . . . SCn}
and M = {M1, M2 . . . Mm }, respectively.

1Note that some of the details of the figure will be explained later.

Fig. 4. Data Structures of matrixes: β, E, and L.

B. Step 2: Preprocessing

The coordinators of sensors SC and modulators M are used
with the radiuses of modulators to generate edge lights. Edge
lights cut across each other segmenting FOI into many cells.
The numbers of sensors and modulators may be different,
i.e. m �= n, e.g., as shown in Fig. 1, there are two modulators
used to modulate the sensing view of sensor SC4. Connecting
sensor SC4 with four vertices of FOI with dashed lines, several
triangles are constructed. If a modulator locates inside one of
such triangles, the modulator can modulate the sensing view
of sensor SC4. For instance in Fig. 1, sensor SC4 is modulated
by modulators M4 and M5.

An edge light is a tangent line of a modulator sensed by its
responding sensor and can be represented as Ax+By+D = 0,
where either D = 1 or D = 0 ∧ B = 1 after we normalize
the equation for D value to be either 0 or 1. Let l denote
the number of edge lights. Let β (shown in Fig. 4) denote
a matrix of 3 × l for storing coefficients (i.e. A, B , D) of
edge lights so that each row indicates one edge light. For any
line i = 1, . . . , l, β(1, i), β(2, i), and β(3, i) are the line’s
coefficients, A, B , and D, respectively. Therefore, we call each
row of β as a line (in fact, coefficients of a line). Rows in β
are built in an order as follows:

In order to sort edge lights, the order of sensors should be
defined first. We start from the point (0, Rso) and go along the
sensor region in the clockwise direction. When finding the first
sensor, we denote the sensor as SC1, and then the second as
SC2, the third as SC3, etc. The order of edge lights are defined
similar to the order of sensors. Assume that each edge light can
only cut across the sensor region once. Each sensor may have
many edge lights. We call the edge light belonging to sensor
SC1 as the first edge light, if we can order all the other edge
lights of SC1 along the sensor region in clockwise direction
from it. Taking this edge light as the first edge light, order
all the other edge lights of all the sensors in the clockwise
direction (shown in Fig. 1). We can have a sequence of edge
lights.

In order to make our algorithm search vertices easily,
we need to sort the vertices in order. Sorting the intersected
vertices in FOI once for all is complex since the vertices are
scattered in a two-dimension coordination system. However,
all of the vertices are intersections of edge lights or boundary
lines of the FOI. It will be much easier to sort the vertices that
are on the same edge light or boundary line. Accordingly, sort
the vertices of each edge light. Take the vertices of the same
edge light as a group. Each time we only sort the group by
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the ascending order and store in matrix L = [L1; L2; . . . ; Ll ]
(shown in Fig. 4), where 0 < l ≤ 2mn is the number of edge
lights. Note that l and L are different variables. Normally,
l ≤ 2m, except the case that they are deployed with a high
density that leads to one modulator modulating more than
one sensor. A sparse matrix E = [E1; E2; . . . ; El] (shown in
Fig. 4) is utilized to store edges of the edge lights in L where
an edge is a line segment of a edge light constructed by two
adjacent vertices. Moreover, any element in E stores all the
edges of the same edge light with the same index in L. For
instance, E1 stores all the edges of edge light L1, E2 stores
the edges of L2,. . . , and El stores the edges of Ll . In addition,
L and E also store weights (defined later) of the vertices and
edges, respectively.

Definition 2: We call the process of finding all the vertices
and edges belonging to a cell as cell reconstruction.

Before reconstructing cells, the weight of every vertex and
every edge should be set. The weight of an edge is set by how
many cells it belongs to.

Definition 3: The weight of an edge or vertex is the total
number of times that it is used to reconstruct cells. The weight
of an edge is defined as

we =
�

1 e is on a boundary line o f FO I

2 e is on an edgelight across FO I
(2)

Any two cells C1 and C2 have at most one edge in
common :

|C1 ∩ C2| =
�

1 C1 i s ad jacent to C2

0 C1 i s not ad jacent to C2
(3)

where C1 ∩ C2 and |C1 ∩ C2| denote the set of common
edges and the number of elements of the intersection set,
respectively.

Since a cell can be represented by a cycle set of vertices,
we can imagine the cell reconstruction process as an ant crawl-
ing along the vertices of the cell in the clockwise direction and
coming back to its start vertex. Denote a cell C1 = v1v2v3v4v1
in FOI, as illustrated in Fig. 2. When constructing C1, suppose
that the ant starts from vertex v1. Then vertex v1 is called as
the first vertex. The ant may crawl to one of the neighbors of
v1 (i.e., vertex v2 or v4). At this moment, we call vertex v2
and v4 are the candidates of its next destination. If it arrives
at v2, we call v2 as the second vertex. If the ant is on its way
to v2, but not arrives at v2, we say that the ant leaves from
v1 and is about to arrive at v2. The ant is supposed to crawl
with a cycle in the clockwise direction and finally come back
to vertex v1. When the ant arrives at a vertex and leaves from
the vertex, the vertex is used twice. Hence, the weight of a
vertex in FOI is defined as

wv = 2c =
�
e∈�

we (4)

where c is the number of cells containing the vertex, � denotes
the set of edges containing this vertex. The proof of the above
equation is given later.

Finally, the weights of vertices and edges are stored with
their coordinates in L and E , respectively. Hence, we can
easily judge the weight when selecting a vertex or an edge.

C. Predominant of Cell Reconstruction

Since we have defined the weight of vertices and edges,
the problem is how to ensure that the selected vertices and
edges can construct a cell. During the vertices selecting
process, the following two constraints should be satisfied:

Constraint 1: Throughout a cell reconstruction process,
the direction to select vertices and edges should keep the same
as clockwise;

Constraint 2: The current vertex and the candidates to be
selected from are neighbors.

Accordingly, the CRSA tool is proposed to reconstruct
cells in FOI and acquire their signatures. The CRSA core
contains four algorithms: FirstVertexSelectionAlgorithm,
SecondVertexSelectionAlgorithm, CrossProductVertexSelec-
tionAlgorithm, and SignatureAcquisitionAlgorithm.

Algorithm 1 Cell Construction Algorithms
Input: SC , M , Rm , VF O I

Output: S, C
C = ∅; F = ∅; S = ∅; i = 1;
Firstly calculate L and E with SC , M , Rm and VF O I ;

while do
Ci = ∅;
Select the first vertex v f of cell Ci with

FirstVertexSelectionAlgorithm;
if no v f selected then

break;
Use v f to select the second vertex vs of cell Ci with

SecondVertexSelectionAlgorithm;
Select the other vertex vt of cell Ci with

CrossProuductVertexSelectionAlgorithm;
Calculate the signature Si of cell Ci with

SignatureAcquisitionAlgorithm;
C = C ∪ Ci , % C is a set of vertex cycles;
S = S ∪ Si ; i = i + 1;

return S, C;

During the cell reconstruction process (shown in
Algorithm 1), FirstVertexSelectionAlgorithm (shown in
Algorithm 2) and SecondVertexSelectionAlgorithm (shown
in Algorithm 3) are used to select the first vertex and second
vertex of the cell (here a cell is taken as a cycle of
vertices). Note that in Algorithm 1, the output F is
initially for usage in later algorithms and % means
comments. CrossProductVertexSelectionAlgorithm (shown
in Algorithm 4) is used to select the other vertices until
the cycle of selected vertices come back to the first vertex.
SignatureAcquisitionAlgorithm (shown in Algorithm 5) is
used to get the signatures of cells in FOI.

The weight computation rules are given as follows:
• If a vertex is selected, its weight will minus 2.
• If an edge is selected, its weight will minus 1.
• If a vertex or an edge is abandoned, its weight keeps the

same.
If the weight of a vertex or an edge is greater than zero

(i.e. w > 0), we say that the vertex or edge is available.
Otherwise, we say that the vertex or edge is unavailable.
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When selecting a vertex, we need to judge whether the
vertex could be used to construct a cell. If the vertex could be
used to construct a cell, it is selected to do the reconstruction
work. Otherwise, abandon the vertex and select another vertex
from its candidates. Now, the rules to abandon a vertex and
select another one are given as follows:

Vertex Changing Rules (VCR): During the process of cell
reconstruction, three cases might happen when selecting a
vertex v, as follows:

a) The present vertex v is unavailable.
b) The vertex v is available, but the edge which joints two

endvertices v and v pre is unavailable, where the vertex v pre

denotes the selected vertex before vertex v.
c) The vertex v and edge v prev are both available, but we

cannot select a vertex to keep the direction of selected vertices
as being clockwise.

If the selected vertex v satisfies one of the cases of the VCR,
we have to abandon vertex v and select another one from its
candidates.

Note that every two neighboring vertices must be two ends
of an edge. For instance, the first vertex and the second vertex
should be two ends of the same edge. When both of the two
ends of an edge are selected, its weight will minus 1.

D. Cell Reconstruction and Signature Acquisition

Now, the FirstVertexSelectionAlgorithm (shown in
Algorithm 2) is described in detail. The inputs of the algorithm
are the coordinates vertices and edges, i.e., L and E . The
outputs are the selected first vertex v f , the ordered set F , and
the cell set C . Since each vertex has at most one chance to
be the first vertex, vertices are stored in an ordered set F to
be orderly selected as the first vertex. For instance, the first
vertex v1 of the first cell is selected from the four vertices
of FOI, might as well the VF O I 3 (as shown in Fig. 1).
Then, it is used to reconstruct the first cell and store the
vertices into an ordered set F . Moreover, each element in F

Algorithm 2 FirstVertexSelectionAlgorithm
Input: L, E , F , i , Ci

Output: v f , F , Ci

j = 1;
if i = 1 then

Select v f ∈ VF O I to reconstruct cell C1;
wv f = wv f − 2;
Ci = v f ; F = �

v f
�
;

else
F = F ∪ Ci ;
% F is an ordered set without repeated elements;
while j ≤ |F | do

if v f satisfies the VCR then
j = j + 1;

else
wv j = wv j − 2;
break;

return v f , F , Ci ;

is unique. For instance, C1 = v1v2v3v4v1, F = {v1v2v3v4}.
|F | is used to denote the number of elements in F . After
that, v2, v3, v4 in F are seriatim selected as the first vertex to
reconstruct cells C2, C3, C4, respectively. In fact, in CRSA
algorithms, each time only one cell is reconstructed. In this
instance, we list three cells to explain the first vertex
selection clearly. As illustrated in Fig. 2, C2 = v2v5v6v7v3v2,
C3 = v3v7v8v3, and C4 = v4v3v8v9v10v4, then we have
F = {v1v2v3v4v5v6v7v8v9v10}. If vertex v2 is selected as the
first vertex to reconstruct the cell C2, these vertices of C2
are stored into F except the repeated vertices. Then, the next
vertex v3 is selected as the first vertex to reconstruct the new
cell C3 and vertices v7 and v8 are stored into F . Note that
when selecting a vertex, we should check whether the vertex
satisfies the VCR or not. Repeat the cell reconstruction work
until the weights of edges and vertices achieve zero.

Algorithm 3 SecondVertexSelectionAlgorithm
Input: L, E , v f

Output: vs

Select the neighbors of v f from L;
Store the selected neighbors into Vcandidates;
Sort Vcandidates by weights in ascending order;
k = 1; vk ∈ Vcandidates;

while do
vs = vk ;

if wvk > 0 and wv f vs > 0 then
apply CrossProductVertexSelectionAlgorithm to
obtain α;
if α=1 then

k = k + 1;
else

wv f vs = wv f vs − 1;
wvs = wvs − 2;
Store wvs into L and store wv f vs into E ;
break;

else
k = k + 1;

return vs ;

Now, we explain the SecondVertexSelectionAlgo-
rithm (shown in Algorithm 3) in detail, which carries
out the matching part of linearly-sorting and-neighbor-
matching (LSNM). The inputs are the selected first vertex v f ,
the coordinates of vertices and edges: L and E . The algorithm
outputs the selected second vertex vs .

Since it is easy to get the first vertex v f from the FirstVer-
texSelectionAlgorithm, neighbors of v f are the candidates
of the second vertex vs . Then, candidates are sorted in the
ascending order by their weights. They are serially selected
one by one to be a vs until finding the vertex which does not
satisfy the VCR. In this part, the process contains two steps:
a) whenever a vertex is selected as vs from the candidates, its
availability should be judged first; b) since edge E f s joints
v f and vs , its availability will be judged.
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If the edge E f s satisfies the VCR. The selected candidate
will be changed by another candidate vertex. Otherwise,
the candidate is selected as the second vertex vs . Then, v f

and vs are plugged into the CrossProductVertexSelectionAl-
gorithm to select the third vertex vt . If there is no third vertex
(no vertex satisfying constraint 1, i.e., α = 0 in Algorithm 3)
to be selected, then the vs will be abandoned and another
candidate of vs will be selected as the new vs to repeat the
above steps in the SecondVertexSelectionAlgorithm.

Algorithm 4 CrossProductVertexSelectionAlgorithm
Input: CI , E , L, i , v f , vs

Output: Ci , α
Set the direction as clockwise, i.e., C D > 0;
Ci = [v f , vs ]; vcp1 = v f ; vcp2 = vs ; α = 1;

while do
Select the neighbors of vcp2 from L;
Store the selected neighbors into Vcandidates;
Set c as the number of candidates in Vcandidates;
k = 1; vk ∈ Vcandidates; vcp3 = vk ;
C Pcandiates = ∅; I Pcandiates = ∅;
countC P = 0; countI P = 0;

if vk is equal to v f then
α = 0; return Ci , α;

while k ≤ c do
if wvcp3 > 0 and wvcp2vcp3 > 0 then

C Pcandiates = [C Pcandiates, vk ];
countC P = countC P + 1;

k = k + 1;

while countC P > 0 do
if C P

�
vcp1, vcp2, vcp3

�
> 0 then

I Pcandiates = [I Pcandiates , vk];
countI P = countI P + 1; α = 0;

countC P = countC P − 1;

if countI P > 1 then
Calculate θ = � vcp1vcp2vcp3;
Select the vertex vk with the smallest θ as vcp3;

if k = c and α = 1 then
break;

wvcp3 = wvcp3 − 2; wvcp2vcp3 = wvcp2vcp3 − 1;
Store wvcp3 into L and store wvcp2vcp3 into E ;
Ci = [Ci , vcp3];
Assign the last two vertices in Ci to vcp1 and vcp2;

%Loop until come back to the vertex v f .

Now, the CrossProductVertexSelectionAlgorithm (shown
in 4) is explained with four steps, and not only carries out
the neighbor matching part of the LSNM, but also introduces
a direction keeping strategy. The inputs are v f , vs , L, and E .
It outputs the vertices cycle of cell Ci and the value of α to
judge if changing the second vertex or not.

Firstly, the direction of vertices selection is set as being
clockwise. In fact, there is no difference to set the direction
as being clockwise or counterclockwise, but to be consistent,

we need to follow one direction throughout the reconstruction
process of a cell.

Secondly, find all the neighbors of the second vertex vs

as the candidates of the third vertex vt . Supposing that
v f

�
x f , y f

�
, vs (xs, ys) are the first vertex and the sec-

ond vertex, respectively, candidates of the third vertex are
Vcandidates = {vt1 (xt1, yt1) , vt2 (xt2, yt2) , . . . vth (xth, yth)},
where h denotes the number of candidates.

Thirdly, select a vertex from the candidates as the third
vertex vt and judge the vertex vt and edge vsvt by the
VCR. If none of them satisfies the VCR, the direction from
v f , vs , to vt should be judged whether it is clockwise
or not. Generally speaking, the cross product of vectors is
an easy and efficient method to judge the direction. Cal-
culate vectors vsv f and vsvtr with vsv f = (x f − xs,
y f − ys), vsvtr = (xtr − xs, ytr − ys), where r = 1, 2 . . . h.
C P = vsv f × vsvtr = [(x f − xs)(ytr − ys) − (xtr − xs)(y f −
ys)]−→J |C P| = |vsv f | · |vsvtr | · sin θ , where θ ∈ [0, π] is the
included angle between v f vs and vsvtr . Then we have :

C P

⎧⎨
⎩

> 0,
= 0,
< 0,

v f vsvtr i s clockswi se
v f vsvtr i s in a line
v f vsvtr i s counterclockswi se

(5)

If more than one vertex vtr satisfies the constraint 1 and
makes v f vsvtr clockwise, the vertex with the smallest
value of θ is selected as the third vertex to satisfy con-
straint 2. Then, the inner product of v f vs , vsvtr should be
calculated. I P = vsv f · vsvtr = �

x f − xs
�
(ytr − ys) +

(xtr − xs)
�
y f − ys

� |I P| = |vsv f | · |vsvtr | · cos θ .
From the value of I P , we can find the value range of θ :

I P

⎧⎨
⎩

> 0,
= 0,
< 0,

θ ∈ [π/2, π)
θ = π/2
θ ∈ [0, π/2)

(6)

The value of C P and I P will help us find the smallest θ .
Finally, repeat the second and third steps until coming back

to the first vertex. Then, a cell is reconstructed.

E. The Algorithm to Calculate Signatures

In Algorithm 5 to calculate signatures, inputs are the vertices
cycle of a cell Ci , the coordinates of modulators M , and the
line equation matrix of edge lights β. It outputs the signature
of a cell Si .

As depicted formerly, the points in the very same cell have
the same signature. The signature of a cell can be obtained
through judging the visibility of one point in the cell. Since
the coordinates of a cell Ci are calculated by above three
algorithms, it is easy to calculate a point p inside the cell by
lemma 4 in the next section. Then, the signature of Ci can be
calculated by judging whether p is in the shadow region of the
modulator of sensors. Since the shadow region is between the
two edge lights of the modulator, we can plug the coordinates
of p and the modulator into the line equation of the two
edge lights, respectively. Then multiply the results to judge the
visibility of Ci to the sensor. If the product is positive, p is
visible to the sensor. Otherwise, p is invisible to the sensor

The signature of a cell Ci consists of n binary bits. Each
time one bit of the signature is calculated, and all the edge
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Algorithm 5 SignatureAcquisitionAlgorithm
Input: Ci , β, M
Output: Si

Si = [];
for j = 1 : 1 : length (Ci ) do

for k = 1 : 1 : length (β) do
Use Lemma 4 to find a point p in cell Ci ;
Find the modulator Mk which is tangent with βk1
and βk2;
Hp = βk1(p) × βk2(p);
HM = βk1(Mk) × βk2(Mk);
if Hp × HM > 0 then

Si = [Si , 1];
else

Si = [Si , 0];

return Si ;

lights of the same sensor should be calculated to determine
one bit of the signature. Because a sensor might be modulated
by more than one modulators, and the results of different pairs
of edge lights might be different. For instance, both “1” and
“0” signature bits are calculated. In this case, the “0” signature
bit will be chosen. The cell is still invisible to the sensor, due
to it is shadowed by one modulator of the sensor. Until all
the “n” bits of a signature is calculated, the signature of the
cell Ci is finished. Note that when calculating one bit of the
signature, edge lights should be chosen first. When edge lights
are chosen, their corresponding sensor and modulator can be
determined because the edge lights of the same sensor are
store in the same row of β.

Now, the signature calculation algorithm of a cell is
explained as follows. There are six steps. Firstly, calculate a
point p in cell Ci with lemma 4. Secondly, select the edge
lights (βk1 and βk2), and the modulator (Mk) of a sensor.
Thirdly, plug the coordinates of p into βk1 and βk2, and
calculate Hp = βk1(p) · βk2(p), where βk1(p) = Ak1x p +
Bk1 yp + Dk1, βk2(p) = Ak2x p + Bk2 yp + Dk2 and Hp denotes
the multiplication result of βk1(p) and βk2(p). Fourthly, plug
the circle-center coordinates of Mk into βk1 and βk2, and
calculate HM = βk1(Mk) · βk2(Mk), where βk1(Mk) =
Ak1xMk + Bk1 yMk + Dk1, βk2(Mk) = Ak2xMk + Bk2 yMk + Dk2
and HM denotes the multiplication result of βk1(Mk) and
βk2(Mk). Fifthly, multiply Hp and HM and if the result is
larger than zero, the signature is “0”, otherwise “1”. Finally,
repeat the steps from step 2 to step 5 until all the modulators
of the same sensor are calculated. Use the logical operation
“and” (i.e.

�
) to the results and get the final value of this bit

in the signature.

Hp · HM

�
< 0 a vi sible cell wi th siganture 1
> 0 an invi sible cell wi th signature 0

(7)

V. THEORETICAL ANALYSIS

A. Cell Reconstruction

This part provides theoretical analysis including convexity
of cells, selection rule of vertices, and a signature acquisition
rule.

Lemma 1: Any edge light cuts across a cell in FOI seg-
menting the cell into two convex cells.

Proof: Suppose that there is a cell C in FOI. An edge
light h cuts across C intersecting with two different edges at
two points. Then, h segments C into two cells Cr and Cl . It is
easy to see that Cr is fully contained in one side of the closed
half-spaces determined by h. So is to Cl .

Now, we prove that all the cells in FOI are convex. We might
as well suppose that the edges lights segment FOI one by
one. The first edge light segments FOI into two cells and
they are convex. The second edge light might segment one
or both of the two cells. If there is one, they become three
convex cells. If there are two, they become four convex cells.
It is no difference how many convex cells segmented by edge
lights, but every edge light cutting across a cell will not
change its convexity and the generated cells will keep convex.
This scenario happens repeatedly, until every edge light has
segmented FOI. Then, it is easy to find that all of the cells
formed FOI are convex. Hence, Lemma 1 holds.

From the proof of Lemma 1 we can get Lemma 2 as follows:
Lemma 2: All of the cells in FOI are convex.

Lemmas 1 and2 are simple but very important. In the algorithm
of cell reconstruction, a rule (one of the weight computation
rules introduced before) is given to limit the direction of
vertices selection when constructing a cell. Lemmas 1 and 2
can guarantee the algorithm works as our expectation.

As illustrated in Fig. 2, suppose that a concave polygon
V2V5V12V7V8V2 is a cell, where V6 and V3 is neglected since
they are on the line of V5V12 and V2V8, respectively. Let us
use CRSA to construct the cell. We start from vertex V2 in the
clockwise direction. CRSA can select V5, V12, and V7 easily.
However, the fifth vertex V8 could not be selected. Because
V12V7V8 are not in the clockwise direction. This case happens
whenever the CRSA is used to construct a concave cell. Hence,
Lemma 2 is necessarily to be used to ensure that all the cells in
FOI are convex. Moreover, the convexity of a cell also restrict
Lemma 4, which will be discussed later.

Next, the proof of equation 4 is given in detail.
Proof: Two edge lights intersect with each other at vertex

v and segment FOI into four cells. There are four cells
containing vertex v. This means that the weight of vertex v
is 8. If there are k edge lights intersect with each other at
vertex v, they will segment FOI into 2k cells [19]. The weight
of vertex v is 2k.

Edges on edge lights are belonging to two adjacent cells.
This means that each of them will be used twice to construct
all the cells that are containing them. However, when vertex
v is at the boundary lines of FOI, there exist two cases:

Case I: vertex v is the intersection of two boundary lines.
Vertex v is at one corner of FOI. It is used twice to construct
one cell, i.e., there are two edges at vertex v, and each will
be used once to construct the same cell.

Case II: vertex v is the intersection of one edge light and
one boundary line. Vertex v is on the boundary line (except
the corner) of FOI and will be used four times to construct
two adjacent cells. The edge which is a part of edge light is
used twice; the two edges which are parts of the boundary
line will be used once. We can conclude that the weight of
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one vertex equals to the double number of cells that it belongs
to, and equals to the sum of weights of edges containing it.
Hence, equation 4 holds.

Theorem 1: If there exists a vertex v which is available,
we can construct a cell with v as the first vertex.

Proof: From equation 4, we know that the weight wv of
vertex v is an even number. In definition 5, when constructing
a cell, leaving and arriving vertex v will lead to wv − 2. Then
wv will still be an even number. Hence, if a vertex is available,
it means that its weight is an even number no less than 2,
i.e., wv ≥ 2.

Now, we prove that a vertex must belong to at least two
edges. Suppose that vertex v only belong to edge L. Then
the weight we of L should have we = wv ≥ 2. It is easy to
know we ≤ 2. Hence, if we = wv > 2, vertex v cannot only
belong to an edge L. If wv = we = 2, there should be two
cells containing edge L and vertex v since in a plane one cell
can only contains an edge once. Since a cell is a cycle set of
vertices, the weight of vertex v should be wv = 4 while it is
belonging to two cells. This is contradict to wv = we = 2.
Hence, vertex v could not only belong to an edge L.

Vertex v joints two edges and these two edges still have
other two vertices denoted as v1 and v2 available. From
v1 and v2, we can prove that there should be other ver-
tices available until we construct a cell. Hence, Theorem 1
holds.

Theorem 1 provides the selection rule of the first vertex
to construct a cell. In fact, Theorem 1 also implicates that
no matter which vertex is selected as the first vertex, it has
no effect on the cell reconstruction result. In other words,
each vertex of a cell can be selected as the first vertex to
reconstruct it.

Lemma 3: If there exists a vertex v that is available, there
must exist at least two neighbors of v available, which can be
two vertices of an unreconstructed cell.

Lemma 4: If va (xa, ya), vb (xb, yb), and vc (xc, yc) are
three vertices of the same cell, point vd (xd , yd) must be inside
the same cell and have the same signature with any other points
inside the cell, where�

xd = αxa + βxb + γ xc

yd = αya + βyb + γ yc
(8)

where 0 < α, β, γ < 1 and α + β + γ = 1.
Proof: We might as well set the cell as a convex set

of points as C ⊆ R2 and points va, vb, vc ∈ C . From the
definition of convex set in [21], we can easily get l1 = δva +
(1 − δ) vb ⊆ C, 0 < δ < 1. However, if va, vb are two ends
of an edge of one cell in FOI, they may belong to several
cells. Hence, the points at the line segment vavb have several
different signatures.

Let l2 = μvb+(1 − μ) vc ⊆ C, 0 < μ < 1. Plus l1 to l2 and
use 2 to divide the sum: T1 = αva + βvb + γ vc ⊆ C , where
α = 0.5δ, β = 0.5 (1 − δ + μ) , γ = 0.5 (1 − μ). Conse-
quently, we have 0 < α, β, γ < 1, and α +β + γ = 1. vd is a
point inside triangle T1. However, T1 is only belong to the cell
who owns vertices va, vb, vc at the same time. From Lemma 3,
the cell who owns va, vb, vc is unique. Hence, Lemma 4
holds.

Lemma 4 is only applicable to convex cells. For a concave
cell, Lemma 4 might yield a point outside the cell.

Conjecture 1: we have

|N | = [(max |C|) − 2n − 1)]/2 + 2 = n2 − n + 2, (9)

where |N | and |C| are the numbers of different signatures
and cells, there are n sensors and n modulators, and each
modulator matches one sensor.

We can verify the above conjecture via experiments later,
but we cannot prove it mathematically.

B. Complexity Analysis

Building the tool is not simple so that we need to propose
better algorithms for the tool. Furthermore, we need to analyze
the proposed algorithms via complexity analysis to see the
effectiveness of the algorithms as follows.

Theorem 2: The lower bound of computational complexity
of CRSA is T (n) = O(m6log2m) under the condition m ≥ n,
where n and m are the number of sensors and modulators,
respectively.

Proof: There are six parts in the analysis. 1) for calculation
complexity of getting coordinates of vertices, line equations
of edge lights should be calculated. There are at most 2m
edge lights and each of them with a constant computation
time. Then we have the computation time is O(m). After
that, we calculate the intersections (i.e., the vertices) of them.
Hence, the edge lights of the same sensor intersect at the
location of the sensor. Actually, the upper bound number of
edge lights of a sensor is a constant, which is limited by
the spatial resolution and sensor efficiency. The computation
time to calculate coordinates of vertices is O(mn). We have
T1 = O(m) + O(mn).

2) The ordered storage of sensor and modulator locations,
coefficients of line equations of the edge lights, coordinates of
vertices will cost lots of computation time. In our experiments,
the edge lights are stored into the same row of a matrix Ei

of the same sensor i , where the row number is correspond-
ing to the sensor number. The computation time is O(mn).
As to the vertex storage, we should order the edge lights and
store vertices on the edge light into the same column of the
matrix L, where the row number is corresponding to the edge
light number. The computation time is O(mn). We have the
storage computation time is T2 = 2O(mn).

3) Now consider the sorting time of vertices. According to
our LSNM strategy, vertices of the same edge lights should
be sorted in an ascending order. We use the bubble sort,
whose computation time is O(n2). Sometimes, a modulator
may modulate more than one sensor and generate more than
2m edge lights. In this case, the density of sensors is relatively
higher. However, our research focuses on the lower density
sensors and higher sense radius scenarios. We assume that the
number of edge lights is at most 2m. The computation time
for sorting is T3 = O(2mn2).

4) Next we consider the search time of vertices in cell
reconstruction. Suppose that each edge light intersects with
all the other edge lights in FOI, except the edge lights which
intersect with it at the location of its responding sensor.
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Suppose that no three edge lights intersect on the same vertex.
There are at most 2m(2m − 1 + 2) vertices (each edge light
intersect with the boundary of FOI, generating two vertices)
in FOI. For a vertex v on edge light Eli , the computation
time to search its location from the 2m + 1 vertices on Eli is
at most O(2m(2m + 1)log2(2m + 1)). However, we have to
search all the 2m edge lights to determine which edge lights
it is on. From [17], we know that the number of vertices is
directly related the number of cells. That is to say, we can
calculate the number of vertices with the number of cells
and both of them will achieve their maximum at the same
time. During the cell reconstruction process, the number of
cells determines the cyclic times cell reconstruction. Hence,
we have to estimate the number of cells. Commonly, we deploy
more modulators than sensors to improve the efficiency of
sensors, i.e., m ≥ n. Under the consideration of attaining a
better spatial resolution with the same number of modulators,
the amounts of vertices should be as much as possible,
i.e., m = n. From [17], a simplified form of the formulation
to calculate the number of cells can be given as: c = 2m2 +1.
However, during the cell reconstruction process, one vertex
might be selected at most 4 times from the candidates of
the present location of the cell. Then the computation time
is T4 = O(4m2(2m2 + 1)(2m + 1)2 log2(2m + 1)).

5) There are three kinds of storage operation during the
cell reconstruction process in CRSA, which are storage of
vertices to be selected as the first, storage of the candidates to
be selected, and storage of the selected vertices in a cell. The
computation time of them are O(2m(2m+1)), O(8m(2m+1)),
O(2m(2m + 1)(2m2 + 1)). Then, the computation time of
storage in cell reconstruction process is T5 = O(10m(2m +
1) + O(2m(2m + 1)(2m2 + 1))).

6) Finally, the computation time to calculate signatures
contains two aspects: the computation time to calculate a
signature and the cyclic time to calculate all the signatures.
As illustrated in the previous section, there are five steps to
calculate a signature and the computation time is O(2mn).
The computation time to cyclic is O(2m2 +1). Thus, we have
T6 = O(2mn(2m2 + 1)).

Now, we can give the whole computation time of our CRSA
method is

T (n) = T1 + T2 + T3 + T4 + T5 + T6 (10)

Under the condition that m ≥ n, the simplified representation
of T (n) is: T (n) = O(m6log2m). Hence, theorem 2 holds.

VI. DEPLOYMENT PERFORMANCE STUDIES

USING THE PROPOSAL TOOL

In this section, we use the proposed tool with an imple-
mentation to study sensor-modulator deployment performance
to attempt to make some scientific discoveries behind the
deployments.

A. Experiment Settings

A deployed sensor is assumed to have an directional view
covering FOI. FOI is a square region with a circumscribed
circle whose radius is Roi . Since the modulators are used to

Fig. 5. The Results of the tool.

TABLE I
STORE FORMATS OF DATA

limit the view range of the sensors, they are deployed closer
to the circumscribed circle of FOI. Consequently, sensors are
assumed to be deployed in an annular region with radius Rsi

and Rso, while modulators are deployed in an annular with
radius Rmi and Rmo. As shown in Fig. 1, it is easy to know
that Rso > Rsi = Rmo > Rmi and a modulator is assumed
to be in a round shape with radius Ro. The default geometric
relationship in our experiments is Rso = 2Rmi , Rsi = Rmo =
1.5Rmi , and Rm = 0.01Rmi , where Rm is the radius of
a modulator. The sizes of sensors and modulators are not
proportional so that the cells might appear to be tilted with
different shapes. FOI is inside the inner circle of the modulator
annular region. Their positions are based on a coordinate
system with the FOI centering as the origin. The data precision
is 1.0e-5 with Rmi = 4. The experiments are aiming to acquire
the vertices of the cells to obtain the signatures of all cells.
Experiments of n = 1, . . . , 14 are designed to analyze the
utilization ratio of signatures and the discrimination degree
of cells based on the results CRSA. Note that our tool can
test any number of sensors and modulators although we show
results of n up to 14.

In Fig.5, each subfigure illustrates its output results with its
title. There are three figure outputs: cell segmentation results,
cell reconstruction results, and utilized signatures to code cells.
Moreover, the store formats of data in Fig.5 are shown in
Table I. Specially, the x-coordinate and y-coordinate of a
vertex in the table of Vertices and Cells are stored in two
adjacent rows, respectively. For instance, for vertex v1 and v2,
x1, x2 stores in row 1 and y1, y2 stores in row 2. Parameters
of edge lights and signatures are stored as follows: each
row stores all the parameters of an edge light (for instance,
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Fig. 6. a) 6S6M FOI segmentation; b) 6S6M cell reconstruction; c) 7S7M
FOI segmentation; d) 7S7M reconstruction.

A1, B1, C1 of the edge light β1 are stored in row 1 and
A2, B2, C2 of the edge light β2 are stored in row 2). So is
the signatures.

B. Searching the Optimal Deployment Strategy

In this part, we utilize the proposed CRSA tool to apply
several optimal deployment strategies for different deployment
scenarios. Firstly, sensors and modulators are deployed in
pairs (one modulator corresponding one modulator). Secondly,
the optimal deployment strategy is defined as the maximum
number of cells, i.e., utilizing a number of sensor and mod-
ulator pairs to segment FOI into the maximum number of
cells. Thirdly, the radius of modulators can be adjusted.
Actually, we can achieve the same result by adjusting the
distance between sensor and its corresponding modulator.
In our experiments, the distances are immobilized so we
adjust the radius of modulators. We conduct experiments with
n = m = {4, 5, 6, 7} sensor and modulator pairs, and find
they can segment FOI into at most 33, 51, 73 and 99 cells,
respectively. These results are in accordance with the formula
max |C| = 2n2 + 1 in [17], where max |C| is the maximum
number of cells, n is the number of sensor and modulator
pairs. This formula can only be used to one sensor and one
modulator pair to calculate the maximum number of cells that
FOI is segmented.

Fig. 6 shows the experiment results in two parts, where the
notation nSmM means n sensors and m modulators: 1) the FOI
segmentation results which illustrate the deployment locations
of sensors and modulators and give the segments cells of FOI;
2) the cell reconstruction results where different cells differ in
colors. We observe that the reconstructed cells match well the
original cells. Cells are constructed and plotted in an ordered
sequence. Due to the intersection of cells, some edges of a cell
may have different colors with other edges. These experiment

results show that our proposed method can help researchers
searching the optimal deployment strategy.

C. Scientific Discoveries Behind the Deployments

Definition 4: Utilization ratio of signatures in a deployment
strategy is defined as: u = |N |/2n , where |N | is the number
of different signatures and n is the number of sensors.

There always exist some cells with the same signature. This
leads to a confusion of which cell the signature represents.
Hence, a definition of discrimination degree is introduced as
follows.

Definition 5: Discrimination degree of cells in a deploy-
ment strategy is defined as: d = |N |/|C|, where |N |
and |C| are the numbers of different signatures and cells,
respectively.

Definition 6: Ideal ratio of cells and signatures is defined
as ideal = (max |C|)/2n , i.e., using the theoretical maximum
number of cells to be divided by the theoretical maximum
number of signatures.

If ideal ≤ 1, theoretically speaking, there exist enough
signatures to encode all the cells, each with a different
signature. However, such a theoretical scenario may not be
achievable. Since max |C| = 2n2 + 1, ideal > 1 might holds.
The purpose of the ideal ratio is to guide researchers to design
deployment formations with as many cells and signatures as
possible. It represents a ratio between the maximum number of
cells and the ideal number of signatures (i.e., 2n , which may
not be achievable with one-on-one modulator-sensor pairs).
However, it provides an upper bound of sensor efficiency and
spatial resolution. Since the ideal ratio specifies the maximum
number of cells over the maximum number of signatures, the
spatial resolution is the best with the maximum number of
cells and the sensor efficiency is the best with the maximum
number of signatures.

Since different cells may have the same signature in a
2-dimension plane. We calculate the times that each signature
used to code cells.

Definition 7: Utilization time of a signature is defined as
the time that the signature is used to code cells

Since signatures are represented with a binary states, we can
treat a signature as a binary number which can be transferred
into a decimal number. With transferring the binary signatures
into decimal numbers, we can draw and observe them easily.
In Fig. 7, the decimal number of signatures are represented
with dots with the same colors and the vacancies between dots
denote the unutilized signatures. The black dots of 3 sensors
are continuous closely since all the signatures are utilized to
code cells of FOI. As the number of sensors increases, both
the number of utilized signatures and the number of vacant
signatures increase too. Signatures are utilized to code and
distinguish different cells. The increment of the number of
signatures also means that the number of cells is increased.

We draw Table II, Fig. 8, and Fig. 9 to answer the questions
listed in an early section. Table II is obtained by using our
CRSA tool to deploy 1-14 sensors and modulators to generate
the maximum number of cells. Then, we calculate the number
of utilization times of signatures and list them in the table.
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Fig. 7. The decimal represent of signatures.

TABLE II
THE DETAILED UTILIZATION TIMES OF SIGNATURES TABLE

The first row represents the number of times that the signatures
are utilized to code cells, i.e., many cells in FOI have the
same signature, and the utilized time of the latter is increased
by 2. The first column represents the number of sensors and
modulators that are used to be deployed, e.g., 2SM means two
sensors and two modulators and each sensor being modulated
by one modulator. The other rows mean that the numbers of
signatures used, e.g., the number 6 in row 4 column 4 means
that there are 6 different signatures, each being used twice to
code cells when 3 sensors and 3 modulators are deployed.
Based on the table, we have the following observations:
1) from the second column, we observe that as the number
of sensors increases, the number of unutilized signatures are
increasing very fast; 2) from the third column, we observe
that there is always a signature which is used only once: in
fact all the bits of the signature are ‘0’, i.e., “00…0”; 3) from

Fig. 8. The relationship between cells and signatures.

Fig. 9. The decimal represent of signatures.

the fourth column, we observe that there are many signatures
that are utilized twice, i.e., there are many signatures that
code two cells; besides, as the number of sensors increases,
the number of utilized signatures increases, but not faster than
the second column; 4) from the other columns except the last,
we observe that no matter how many sensors that we deploy,
there is always one cell that is utilized more than twice while
the number of sensors are no less than 2; in fact all the bits of
the signature are ‘1’, i.e., “11…1”; 5) from the last column,
we observe that the number of utilized signatures increases
as the number of sensors increases; however, the number of
the utilized signatures is fewer than the number of unutilized
signatures that is increasing dramatically as illustrated in
the second column; in other words, there is a significant
number of unutilized signatures as the number of sensors is
large; 6) we observe that the number of the utilized signatures
as |N | = [(max |C|)−2n−1)]/2+2 = n2 −n+2 as indicated
in Conjecture 1 (equation 9) since there are 2n cells having
the same signature as 11 . . .1 (all bits “1”), one cell having a
signature as 00 . . . 0 (all bits “0”), and the remain signatures
are used twice; 7) almost all the actual signatures are utilized
twice or more; cells that have the same signatures might lead to
wrong localizations of targets; this problem should be solved
by designing the combination of RST (for instance, the RSTs
in [10]).

In Fig. 8, we adopt 1-14 sensors, where each sensor is
modulated by one modulator. Fig. 8 shows the relationship
of the number of cells/signatures vs. n (i.e., the number of
sensors) with three curves: 1) the pink curve with circle marks
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as the ideal number of signatures using the function 2n , 2) the
red curve with square marks as the maximum number of
cells generated by our CRSA tool, and 3) the blue line with
star marks as the number of utilized signatures generated
by our CRSA tool. From Fig. 8, we have the following
observations: 1) as n increases, all three curves increase;
this means that we can achieve a better spatial resolution by
deploying more sensors; 2) the number of cells is always
greater than the number of utilized signatures; this means
that there are always many cells with the same signatures;
3) when n ≤ 4, the number of ideal signatures overlaps with
the number of actual signatures; this means that when n ≤ 4,
we can achieve the best sensor efficiency, i.e., 1. 4) when
n > 4, the number of ideal signatures are more than utilized
signatures and the gap between them continues to widen as n
increases; this means that when n > 4, the more sensors that
we deploy, there are more unutilized signatures, and therefore
the sensor efficiency are becoming worse; 5) when n > 6,
the number of ideal signatures are more than the number of
cells; that means that when n > 6, we can never utilize all
the signatures with each sensor modulated by one modulator;
moreover, as n increases, the gap between the number of cells
and the number of ideal signatures continues to widen; this is
one of the reasons that the sensor efficiency becomes worse.

Fig. 9 shows the three metrics: the utilization ratio of
signatures (u), the discrimination degree of cells (d), and the
ideal ratio of signatures (ideal) with the pink line with circle
marks, the blue line with star marks, and the red line with
square marks, respectively. From Fig. 9, we have the following
observations: 1) as n increases, ideal increases first and then
decreases approaching to zero; from the definition of ideal =
(max |C|)/2n , we can think that both max |C|) and 2n are
increasing functions of n and when ideal increases/deacreases,
the speed of increasing the number of cells is larger/smaller
than the speed of increasing the number of ideal signatures;
since the function 2n is exponentially increasing while max |C|
is increasing but not exponentially, ideal finally declines
approaching to zero; 2) when n ≤ 6, we have ideal > 1
and this indicates that the number of cells is larger than the
number of ideal signatures; 3) as n increases, u keeps 1 first
and then declines to zero; u = 1 means that all the signatures
are utilized to code cells and the sensor efficiency is 1; as n
increases, the sensor efficiency becomes worse and approaches
to zero; 4) as n increases, d decreases below 0.5 and tends to
be stable around 0.5; this means that there are almost half of
the cells having the same signatures and the spatial resolution
is far more enough to d = 1; the best discrimination degree
of cells (d) achieves when we deploy one sensor.

Since the purpose of using RST is to achieve a better local-
ization accuracy, we not only want a larger d , but also more
cells. Hence, the metric, the discrimination degree of cells,
should be considered firstly. Under the condition that achieves
an expected discrimination degree of cell, we expect the ratio
of utilized signatures as larger as possible. Besides, the number
of cells is smaller than the number of ideal signatures when
n > 4. The spatial resolution depends on the number of cells
in FOI. This means that the more cells we have, the better the
spatial resolution might be. In our experiments, the maximum
number of cells are attained. The value of u can be regard

as the spatial resolution when n is chosen. Hence, the dis-
crimination degree of cells in a deployment formation is very
important to improve spatial resolution. In Fig.9, it is easy
to observe that the discrimination degree of cells (namely,
u) is around 0.5, due to the fact that almost half of the
cells have the same signatures as shown in Table II. This
means that more than half of the cells are undistinguishable.
Actually, it is no sense to seek the maximum cells with so
many undistinguishable cells.

The another metric that the utilization of signatures (namely,
d) is utilized to measure the sensor efficiency of a deploy-
ment formation. Commonly, researchers take the measure that
enhance the sensor efficiency to achieve a better spatial reso-
lution (for instance, using more sensors). However, there still
another way to improve spatial resolution without increasing
the number of sensors, i.e., using more modulators. In this
way, the number of cells also increases and the modulators
should be designed specially (for instance, [10], [22]). Hence,
utilizing specially designed RST can also improve sensor
efficiency.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a tool to visually and efficiently
represent and analyze the deployment formation and spatial
resolution. A cell reconstruction algorithm was proposed to
reconstruct cells generated by the deployment formation in
which lists of vertices are generated by regarding cells as
shortest path rings. We further provided some theoretical
analysis and computational complexity analysis of the pro-
posed algorithm.

We utilized our tool to conduct some experiments and
the tool can help us to find the maximum number of cells.
We defined three metrics: the utilized ratio of signatures,
and the discrimination degree of cells, and the ideal ratio of
signatures. From our experiments, we verified the conjecture
between utilized signatures and cells, |N | = n2 − n + 2,
when one sensor is modulated by one modulator. From the
experiments, we learnt that as the number of sensors increases,
the spatial resolution becomes better and the number of cells
increases while the discrimination degree of cells tend to 0.5.
At the meantime, we learnt that the sensor efficiency keeps
declining to zero as the number of sensors increases. Hence
balance between the spatial resolution and sensor efficiency
can help researchers choose better parameters, such as the
number of sensors, etc.

However, there are still much work to do. For instance,
there are many variables in our studies, such as the number of
sensors, the number of modulators, the coordinates of sensors
and modulators, the size of modulators, etc. In our future work,
we aims to utilizing our tool to explore the relationships among
such parameters and exploring the metric of RST design and
deployment. Besides, the shapes and the areas of cells have
a great effect on spatial resolution. It is easy to find that the
shape of some cells might be too small or too big. We expect
cells to have a small variance in an area. How to deploy the
proper number of sensors and modulators to achieve a small
variance in areas among cells is still under exploring.

Our current studies focus on a software tool for sen-
sor deployments. As future work, we will conduct physical
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experiments on sensor deployments, target counting, and
localization.

The space accuracy, positioning accuracy, and positioning
rate mainly depend on the deployment algorithm. Future work
also includes designing new deployment formations to achieve
the expected accuracy. New deployment formations will be
designed to obtain the expected space accuracy, positioning
accuracy, and positioning rate.

In another ongoing paper of ours, we work on studying
positioning and tracking with multiple people in the sensing
region. In our work, we study a problem called ‘the invisible
target‘ problem. When multiple targets move in the monitoring
space, using one instant sensing result cannot distinguish them.
We are solving the problem by designing appropriate detection
algorithms by utilizing traces of moving objects for a time
period.

Our tool in this paper can be used indoors and outdoors.
However, as we mentioned earlier, we need additional detec-
tion algorithms built on top of this tool to study multiple
people and effects of the number of people (many or few).
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