
On-Bound Selection Cache Replacement Policy
for Wireless Data Access

Hui Chen, Member, IEEE, and Yang Xiao, Senior Member, IEEE

Abstract—Cache can be used for mobile devices to reduce the usage of limited bandwidth in wireless networks. Ideally, frequently

accessed and infrequently updated data items should be cached and infrequently accessed and frequently updated data items should be

evicted or not cached at all. Most of the existing cache replacement policies adopt only access information so that frequently updated

data items are also cached. As a remedy, we propose a cache replacement policy, called On-Bound Selection (OBS), that uses both data

access and update information. The proposed OBS is inspired by an analytical analysis for a server-based Poll-Each-Read (SB-PER)

and a revised Call-Back (R-CB). The OBS provides an upper bound for effective hit ratio and a lower bound for communication cost. The

proposed scheme is evaluated and compared with a least frequently used (LFU) replacement policy through extensive simulations.

Simulation results show that the OBS outperforms LFU in terms of both effective hit ratio and communication cost.

Index Terms—Cache, replacement policy, wireless networks, access, update, effective hit ratio, communication cost.

Ç

1 INTRODUCTION

MOBILE Terminals (MTs) have been used to access
information stored in remote servers through wireless

communication channels. However, wireless channels are
the scarcest and most expensive resource in entire networks.
Cache mechanisms have been introduced to reduce the
bandwidth usage of wireless channels [3], [7], [8], [13], [15],
[20], [27], [29]. In general, a cache mechanism consists of a
cache access algorithm and a replacement policy. A cache
access algorithm defines how a client and its server exchange
messages and data to achieve a certain degree of data
consistency. Examples of cache access algorithms are Poll-
Each-Read (PER) [20], [21], Call-Back (CB) [14], [20], [31], and
Invalidation Report (IR) [3]. Many applications use strong
consistent cache access algorithm [3], [7], [8] to prevent using
stalled data. A replacement policy decides which cached data
item is evicted when an uncached data item is accessed and
the cache is full. Replacement policies affect the overall cache
performance. They are more important to wireless MTs than
to wired terminals since wireless terminals generally have
less cache space than wired ones.

Many cache replacement policies have been proposed for
wired and wireless networks [2], [26], [29], [30]. However,
most of these replacement policies use only data access
information and ignore data update information. Update
information is critical and should not be ignored because an
update makes a cached data item invalid and a cache hit
becomes useless. Two replacement policies [29], [30] have

been proposed to use both access and update information
with IR schemes. However, their design goal is to reduce
the stretch, a normalized delay, which is not the scarce and
expensive resource in entire networks and is, at least
sometimes, not the best design goal. Furthermore, as
pointed out in [20], IR schemes require broadcasting in
entire networks and are not suitable for implementation in
realistic wireless networks. IR schemes may also require
low layer functions (for example, data link layer) of wireless
network protocols, which may not be available for
implementing caching in upper layer applications (for
example, application layer).

This paper studies cache replacement policies. Our goal
is to design a replacement policy for increasing effective
cache hit ratio and decreasing communication cost as much
as possible. Two update-based strong consistent cache
access algorithms, a server-based PER (SB-PER) and a
revised CB (R-CB), are introduced and they provide both
access and update histories to replacement policies. They
can also be run in application layers and do not rely on
lower layer functionalities of wireless network protocols.
Intuitively, a good replacement policy should evict infre-
quently accessed but frequently updated data items. We
analytically analyze access and update processes in the
SB-PER and the R-CB. The analysis provides an upper
bound of effective hit ratio and a lower bound of
communication cost. The analytical analysis inspires us
with how infrequently accessed but frequently updated
data items can be chosen. We hence design a replacement
policy, called On-Bound Selection (OBS), to evict infrequently
accessed but frequently updated data items while keeping
frequently accessed but infrequently updated data items
according to the defined bounds. Our proposed OBS
replacement policy is a frequency-based replacement
policy. It is not limited to wireless data access and it is
also applicable to wired networks such as Internet client-
server applications and Web caching.

The rest of this paper is organized as follows: Section 2
shows the network architecture, the data access model, and

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007 1597

. H. Chen is with the Department of Mathematics and Computer Science,
Virginia State University, Petersburg, VA 23806.
E-mail: huichen@ieee.org.

. Y. Xiao is with the Department of Computer Science, University of
Alabama, 101 Houser Hall, Box 870290, Tuscaloosa, AL 35487-0290.
E-mail: yangxiao@ieee.org.

Manuscript received 22 Jan. 2006; revised 17 Oct. 2006; accepted 13 June
2007; published online 9 July 2007.
Recommended for acceptance by A. Mei.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0023-0106.
Digital Object Identifier no. 10.1109/TC.2007.70768.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

several examples of wireless data applications. The SB-PER
and the R-CB access algorithms are introduced in Section 3.
We propose the update-based replacement policy in
Section 4. The analytical model of cache access and update
is presented in Section 5. In Section 6, we briefly present our
motivation and comments on cache replacement policies.
Performance evaluation and comparison are given in
Section 7. We conclude the paper in Section 8.

2 NETWORK ARCHITECTURE AND APPLICATIONS

2.1 Network Architecture Overview

Wireless data applications and services have been provided
on personal communication service (PCS) networks [25]. In
current PCS networks, a service area is divided into a number
of location areas (LAs). An LA is further partitioned into a
number of cells. Each cell has a base station (BS), which
controls many MTs within the cell via wireless links. All of the
BSs within one LA are connected to a mobile switching center
(MSC). All of the MSCs are finally connected to a public
switched telephone network (PSTN). A PCS can be connected
to the Internet in many ways, such as wireless carriers’
proprietary networks and PSTN. An MT can access data
servers residing in either PCS networks or the Internet via its
corresponding BS. Fig. 1 shows an example of a wireless
network architecture for wireless data access.

In general, as shown in Fig. 1, wireless data access
follows client-server models. Databases are hosted at
remote servers, which are usually in the wired networks.
In this paper, we do not distinguish among clients, MTs,
and users. A client accesses data items in a database in a
remote server through wireless links when the data item is
not in cache or is cached but not valid. The server updates
data items when requested by clients or others.

2.2 Wireless Data Applications

We briefly show several examples of wireless network
applications which can benefit from the proposed cache
access algorithms and replacement policies. Wireless Web
applications are particular examples of such applications.
Many network protocols can be used to support wireless
network data applications.

The Wireless Application Protocol (WAP) is designed to
enable easy, fast delivery of relevant information and
services to mobile users in wireless cellular networks.

WAP applications run in client-server models. Cache
operations have been proposed for WAP applications [18].

In [20], a business card application is proposed for iSMS,
a platform that integrates the IP network with the Short
Message Services (SMS) in a mobile telephone network. A
subscriber can store a phone book consisting of a number of
business cards in a remote server. This server-based
application has many advantages. First, the subscriber can
access the phone book through different MTs. Second, the
application server may provide directory services such as
yellow pages and white pages.

In [16], an online auction Web application is proposed.
An auction item is associated with its description, price, and
reviews. Some of the items change more frequently than
others do. For example, price may change every few
minutes and the description remains the same during the
auction. This application is not necessarily implemented as
a Web application and it is beneficial to implement this
application on wireless networks because a user may have a
desire to start an auction anytime and anywhere.

A wireless application called a real-time stock price
monitor can be used to check stock prices and a user can
make a transaction by using the MT based on the stock
information obtained from a server. In this application, the
data sources may or may not be located outside the cellular
networks. Stocks are updated and accessed at different
rates. Some stocks may be traded in a huge volume. Their
prices may change very frequently.

These examples show that update and access frequencies
can be different among different data items. In fact, as
shown in [5], many data items stored in remote databases
and accessed through Web applications change frequently.
Therefore, it is important to accommodate both update and
access information into cache mechanism design. Further-
more, it is generally impossible to cache all server-kept data
items such as the business cards of all subscribers, the prices
of all auction merchandise, and the prices of all stocks in
local client caches. Inevitably, cache replacement policies
need to be taken into account. Nevertheless, as we will
discuss in Section 7.5, it is not necessarily good for the
overall system performance to maximize client cache space
in networks with updates, especially heavy updates.
Consequently, replacement policies are better as an integral
part of the network system architecture.

3 CACHE ACCESS ALGORITHMS

PER and CB are two widely used fundamental cache access
algorithms for a client-server data access model [20], [21]. In
PER, a client attempts to read a data item from a server at
each access and the server only replies to it with an
acknowledgment when the data item is cached and valid,
where a valid data item means that the data item has not
been updated since it was cached, and, if the data item is
invalid, the server sends the data item to the client. In CB,
the server sends an invalidation message at each update to
the client, which caches the updated data item. The details
of these two schemes can be found in [20]. In this section,
we introduce an SB-PER and an R-CB suitable for using
both update and access information in replacement policies.
Both of these cache access algorithms have the capability of

1598 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

Fig. 1. Wireless network architecture.

maintaining full access and update histories and thus can

use any replacement policy using both data access and

update information.

3.1 Server-Based Poll-Each-Read

As shown in Fig. 2a, the SB-PER uses a stateful server, which

stores access (Step 1.3) and updates (Step 4.2) the histories of

all data items. The server becomes the most knowledgeable

entity in the network and, thus, it is capable of making the

wisest decisions. Therefore, the server makes replacement

decisions for a client (Step 3.1) and sends decisions to the

client (Step 3.2). At the server, an object profile is used for

storing the update histories of all data items.

3.2 Revised Call-Back

As shown in Fig. 2b, we revised the original CB algorithm

such that the server records the access and update histories of

all data items (Steps 2.5 and 3.5) and the access and update

histories of the cached data items at clients are synchronized

through the messages. We shall call it the R-CB. Note that the

server saves the access history of a cached data item by

sending a message to the server (Step 2.5) when it is evicted

to accommodate the accessed data item. The access and

update histories of a data item are sent to a client with the

data item by the server (Step 2.2). Therefore, the client has

the up-to-date access and update histories of all of the

cached and accessed data items and, thus, it can make the

wisest replacement decision (Step 2.3). As shown in Fig. 2b,

the user profiles and the object profile have the same usage

as the SB-PER.

4 ON-BOUND SELECTION REPLACEMENT

In this section, we propose an update-based cache replace-

ment policy, called OBS, which uses both update and access

frequencies. The OBS tries to cache frequently accessed but

infrequently updated data items and to evict infrequently

accessed but frequently updated data items in the cache. In

other words, the OBS tries to keep good data items and evict

bad data items in the cache.

Let faijðtÞ denote the access frequency of data item Oj at
client i and let fuj ðtÞ denote the update frequency of data
item Oj at the server up to time t, respectively. Note that
fuj ðtÞ does not have a subscript i, but faijðtÞ does since fuj ðtÞ
is a global statistic. Denote �ij and �j as the access rate of
data item Oj at the client i and the update rate at the server,
respectively. We expect that faijðtÞ and fuj ðtÞ approach the
access rate �ij and the update rate �j, respectively, when
time t is significantly large, that is, �ij ¼ limt!1 f

a
ijðtÞ and

�j ¼ limt!1 f
u
j ðtÞ. We define an “On-Bound Selection” factor

(OBS factor) as follows:

OBSFijðtÞ ¼
faijðtÞ
� �2

faijðtÞ þ fuj ðtÞ
; ð1Þ

OBSFij ¼ lim
t!1

OBSFijðtÞ ¼
�ij
� �2

�ij þ �j
: ð2Þ

In the OBS replacement policy, the cache access algo-
rithms maintain access and update histories, which can be
used to compute the OBS factor defined in (1). The
replacement policy computes the OBS factors of all of the
cache data items and the newly accessed data item and then
looks for the data item with the least OBS factor. If the data
item with the least OBS factor is not the newly accessed data
item, the corresponding data item is replaced with the
newly accessed data item; otherwise, the accessed data item
is not cached and there is no change in the cache.

The OBS policy is a frequency-based replacement policy
since it uses access and update frequencies. First, as we
have discussed in Section 3, the SB-PER and the R-CB are
the cache access algorithms that are capable of maintaining
access and update histories of all data items. Therefore, the
OBS policy can be applied to the SB-PER and the R-CB.
Second, the access and update frequencies are measured by
using a moving window. For the rest of the paper, the
performance of the OBS policy is studied for these two
cache access algorithms. However, the proposed replace-
ment policy should not be limited to just these two cache
access algorithms and it should be suitable for any cache

CHEN AND XIAO: ON-BOUND SELECTION CACHE REPLACEMENT POLICY FOR WIRELESS DATA ACCESS 1599

Fig. 2. (a) The SB-PER and (b) the R-CB.

access algorithm that can provide both access and update
frequencies.

5 ANALYTICAL MODEL

In this section, we provide an analytical analysis that gives
the reasoning behind the OBS scheme. The network has a
data server and many clients. All data accesses happen at
clients and all updates happen at the server. We have the
following assumptions:

1. The server has N data items.
2. A client has a cache that holds up to K data items.
3. Accesses to data item Oi follow a Poisson process

with rate �i.
4. Updates to data item Oi follow a Poisson process

with rate �i.

An effective cache hit is defined as an event where an
access happens to a data item that is cached and valid. The
effective hit ratio of a cache access algorithm with a
replacement policy is the probability that an access causes
an effective cache hit when the cache access algorithm is
exercised with the replacement policy. Let pSB�PER and
pR�CB denote the effective hit ratios of the SB-PER and the
R-CB with a given replacement policy, respectively.

Define the effective hit ratio of data item Oi of a cache
access algorithm with a replacement policy as the prob-
ability that an access causes an effective cache hit and the
accessed data item is Oi when the cache access algorithm is
exercised with a replacement policy. Let pSB�PER;i and
pR�CB;i denote the effective hit ratios of data item Oi for the
SB-PER and the R-CB with a given replacement policy,
respectively.

Since wireless channels between MTs and their BSs are the
scarcest and most expensive resources, we only consider the
bandwidth usage of messages and data transmitted between
MTs and their corresponding BSs. Define communication
cost as the average bytes transferred through wireless links
between MTs and the BSs per data access. Let cSB�PER and
cR�CB denote communication costs for the SB-PER and the
R-CB with a given replacement policy, respectively.

Let Xi denote the random variable of the number of
accesses to data item Oi occurring between two consecutive
updates to data item Oi. Let pðXi ¼ kÞ denote the prob-
ability that exactly k accesses to data item Oi occurring
between two consecutive updates to data item Oi. pðXi ¼ kÞ
is independent of replacement polices. Let EðXiÞ denote the
average number of accesses to data item Oi occurring
between two consecutive updates to data item Oi. EðXiÞ
depends on both access and update processes, but is
independent of replacement policies. Let EðXSB�PER;iÞ
and EðXR�CB;iÞ denote the average numbers of effective
cache hits to data item Oi between two consecutive updates
to the same data item when the SB-PER or the R-CB is
exercised with a given replacement policy, respectively. Let
nUSB�PER;i and nUR�CB;i be upper bounds of the average
numbers of effective cache hits to data item Oi between two
consecutive updates to the same data item when the SB-PER
and R-CB are exercised, respectively, with a given replace-
ment policy.

The message transmission costs for a request message

(Step 1.2 in Fig. 2a and Step 2.1 in Fig. 2b), an acknowledge

message (Step 1.5 in Fig. 2a and Step 3.4 in Fig. 2b), and an

invalidation message (Step 3.2 in Fig. 2b) are creq, cack, and cinv,

respectively. Assume that the cost for transmitting any data

item is the same and is denoted as cobj, that is, we assume that

the data items are of the same size. We assume that message

headers have some extra fields that can be used for holding

access and update frequency information and replacement

decisions. Therefore, the access/update frequency informa-

tion in messages in Step 3.2 in Fig. 2a and Steps 2.2 and 3.4 in

Fig. 2b is not counted, only the message in Step 2.5 of Fig. 2b

is counted and its cost is denoted as ca.

Lemma 1. The following inequalities always hold for both the

SB-PER and the R-CB with any replacement policy:

pSB�PER;i �
1

�

�2
i

�i þ �i
; ð3Þ

pR�CB;i �
1

�

�2
i

�i þ �i
: ð4Þ

Proof. According to [28],

pðXi ¼ kÞ ¼
�i

�i þ �i
�i

�i þ �i

� �k
; ð5Þ

EðXiÞ ¼
X1
k¼0

kpðXi ¼ kÞ ¼
�i
�i
: ð6Þ

There are three cases in total: 1) There is no access to
data Oi between two consecutive updates to Oi, 2) there
is only one access to data Oi between two consecutive
updates to Oi, and 3) there are n � 2 accesses to data Oi

between two consecutive updates. When an access to
data item Oi happens, Oi may be cached if it is the first
access between two consecutive updates to Oi and, then,
subsequent accesses can be cache hits. Note that
replacements make the number of cache hits fewer than
the number of subsequent accesses, that is, cases 1 and 2
do not contribute to any effective cache hit definitely and
only case 3 contributes at most n� 1 effective cache hits
no matter which replacement policy is used. Therefore,
regarding data item Oi, from (5), we can derive an upper
bound of the number of effective cache hits to data
item Oi between two consecutive updates to data item Oi

for the SB-PER for a given replacement policy, that is,

nUSB�PER;i ¼
X1
k¼2

ðk� 1ÞpðXi ¼ kÞ

¼
X1
k¼2

ðk� 1Þ �i
�i þ �i

�i
�i þ �i

� �k
¼ �i�

2
i

�i þ �i

ð7Þ

and

EðXSB�PER;iÞ � nUSB�PER;i � EðXiÞ: ð8Þ

Because access and update are two Poisson processes,
according to (6), (7), and (8),

1600 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

pSB�PER;i ¼
�i
�

EðXSB�PER;iÞ
EðXiÞ

� �i
�

nUSB�PER;i
EðXiÞ

¼ �i
�

�i�
2
i

�i þ �i

.�i
�i
¼ 1

�

�2
i

�i þ �i
:

ð9Þ

Similarly, we have

pR�CB;i ¼
�i
�

EðXR�CB;iÞ
EðXiÞ

� �i
�

nUR�CB;i
EðXiÞ

¼ 1

�

�2
i

�i þ �i
: ð10Þ

tu
Theorem 1. The following inequalities always hold for both the

SB-PER and the R-CB with any replacement policy:

pSB�PER �
1

�

XN
i¼1

�2
i

�i þ �i
; ð11Þ

pR�CB �
1

�

XN
i¼1

�2
i

�i þ �i
: ð12Þ

Proof. According to Lemma 1, when the SB-PER is

exercised with a given replacement policy, we have

pSB�PER ¼
XN
i¼1

pSB�PER;i �
XN
i¼1

1

�

�2
i

�i þ �i
¼ 1

�

XN
i¼1

�2
i

�i þ �i
:

ð13Þ

Similarly,

pR�CB ¼
XN
i¼1

pR�CB;i �
XN
i¼1

1

�

�2
i

�i þ �i
¼ 1

�

XN
i¼1

�2
i

�i þ �i
: ð14Þ

tu

Theorem 1 indicates that we have found an upper bound

for the effective hit ratio of the SB-PER and an upper bound

for the effective ratio of the R-CB. Denote them as pUSB�PER
and pUR�CB, respectively, that is,

pUSB�PER ¼ pUR�CB ¼
1

�

XN
i¼1

�2
i

�i þ �i
:

Corollary 1. The following inequality always holds for the

SB-PER with any replacement policy:

cSB�PER � creq þ 1� pUSB�PER
� �

cobj þ pUSB�PERcack: ð15Þ

Proof. According to our algorithm illustrated in Fig. 1a, the

communication cost of the SB-PER with a given replace-

ment policy is

cSB�PER ¼ creq þ 1� pSB�PERð Þcobj þ pSB�PERcack: ð16Þ

Then,

dcSB�PER
dpSB�PER

¼ cack � cobj: ð17Þ

Without loss of generality, assume that cack < cobj.
Then,

dcSB�PER
dpSB�PER

< 0: ð18Þ

Equation (18) indicates that cSB�PER is a monotoni-
cally decreasing function of pSB�PER. Since pUSB�PER is an
upper bound, pSB�PER � pUSB�PER. Therefore,

cSB�PER � creq þ 1� pUSB�PER
� �

cobj þ pUSB�PERcack: ð19Þ

tu
Corollary 2. The following inequality always holds for the R-CB

with any replacement policy:

cR�CB � 1� pUR�CB
� �

creq þ cobj
� �

: ð20Þ

Proof. According to our algorithm illustrated in Fig. 1b, the

communication cost of the R-CB is

cR�CB ¼ 1� pR�CBð Þ creq þ cobj
� �

þ pinv cinv þ cackð Þ þ prepca;
ð21Þ

dcR�CB
dpR�CB

¼ � creq þ cobj
� �

< 0; ð22Þ

dcR�CB
dpinv

¼ cinv þ cackð Þ > 0; ð23Þ

dcR�CB
dprep

¼ ca > 0: ð24Þ

Equations (22), (23), and (24) indicate that cR�CB is a
monotonically decreasing function of pR�CB, a mono-
tonically increasing function of pinv, and a monotonically
increasing function of prep, respectively. We know that
pinv � 0 and prep � 0. Given that pUR�CB is an upper bound
of the effective hit ratio, that is, pR�CB � pUR�CB, we have

cR�CB ¼ 1� pR�CBð Þ creq þ cobj
� �

þ pinv cinv þ cackð Þ þ prepca
� 1� pR�CBð Þ creq þ cobj

� �
þ pinv cinv þ cackð Þ þ 0 � ca

� 1� pR�CBð Þ creq þ cobj
� �

þ 0 � cinv þ cackð Þ
� 1� pR�CBð Þ creq þ cobj

� �
� 1� pUR�CB
� �

creq þ cobj
� �

:

ð25Þ

tu

Corollaries 1 and 2 indicate that we have found a lower

bound for the communication cost of the SB-PER and a

lower bound for the communication cost of the R-CB.

Denote them as cLSB�PER and cLR�CB, respectively, that is,

cLSB�PER ¼ creq þ 1� pUSB�PER
� �

cobj þ pUSB�PERcack

and cLR�CB ¼ ð1� pUR�CBÞðcreq þ cobjÞ.
Theorem 2. The SB-PER and the R-CB (with any replacement

policy) reach their effective hit ratio upper bounds pUSB�PER
and pUR�CB given in Theorem 1, respectively, when K � N .

Proof. Since K � N , there is no replacement. Without loss

of generality, assume that the cache is divided into

N slots, and each slot can hold a data item. Associate

each data item with a particular slot. A data item is

CHEN AND XIAO: ON-BOUND SELECTION CACHE REPLACEMENT POLICY FOR WIRELESS DATA ACCESS 1601

always cached at a certain slot. Therefore, caching
different data items becomes disjoint events. We have

pSB�PER ¼ pR�CB ¼
XN
i¼1

�i
�

�i
�i þ �i

¼ 1

�

XN
i¼1

�2
i

�i þ �i
; ð26Þ

that is,

pSB�PER ¼ pR�CB ¼ pUSB�PER ¼ pUR�CB: ð27Þ

tu
Corollary 3. The SB-PER (with any replacement policy) reaches

its communication cost lower bound cLSB�PER given in
Corollary 1 when K � N .

Proof. According to Corollary 2 and Theorem 2,

cLSB�PER ¼ creq þ 1� pUSB�PER
� �

cobj þ pUSB�PERcack
¼ creq þ 1� pSB�PERð Þcobj þ pSB�PERcack ¼ cSB�PER:

ð28Þ

tu
Corollary 4. When K � N , the communication cost of the R-CB

(with any replacement policy) is

cR�CB ¼ 1� pR�CBð Þ creq þ cobj þ cinv þ cack
� �

; ð29Þ

which is larger than cLR�CB, given in Corollary 2 with no more
than two message costs.

Proof. Since K � N , there is no replacement, that is,
prep ¼ 0. We also have

pinv ¼
XN
i¼1

�i
�

�i
�i þ �i

¼ 1

�

XN
i¼1

�i�i
�i þ �i

¼ 1� pLR�CB; ð30Þ

cR�CB ¼ 1� pR�CBð Þ creq þ cobj
� �

þ pinv cinv þ cackð Þ þ prepca:
ð31Þ

Therefore, when K � N , we have

cR�CB ¼ 1� pLR�CB
� �

creq þ cobj þ cinv þ cack
� �

: ð32Þ

According to Corollary 2 and Theorem 2,

cR�CB ¼ 1� pUR�CB
� �

creq þ cobj þ cinv þ cack
� �

� 1� pUR�CB
� �

creq þ cobj
� �

¼ cLR�CB:
ð33Þ

tu

5.1 Remarks on the OBS Replacement Policy

According to the definition of the OBS factor and Lemma 1,
we have the following observations about the effective hit
ratios of data item Oi for the SB-PER and the R-CB,
respectively, at client k:

pUSB�PER;i ¼ pUR�CB;i ¼
1

�

�2
ki

�i þ �ki

¼ lim
t!1

1

�

fakiðtÞ
� �2

fakiðtÞ þ fui ðtÞ
¼ 1

�
lim
t!1

OBSFki:

ð34Þ

Furthermore, according to Theorem 1, we have the
following observation about the effective hit ratios for the
SB-PER and the R-CB, respectively:

pUSB�PER ¼ pUR�CB ¼
1

�

XN
i¼1

�2
ki

�i þ �ki
¼ 1

�
lim
t!1

XN
i¼1

OBSFki:

ð35Þ

Therefore, the OBS factor actually defines an upper bound

of the effective hit ratio of a particular data item.
Theorem 2 suggests that the upper bounds of the

effective hit ratios can actually be reached when there is

no replacement. The proposed replacement policy “OBS”

always tries to keep the data items with larger OBS factors

in the cache and to evict the data item with the least OBS

factor. Therefore, the data items with larger OBS factors

tend to stay in the cache longer than those with smaller OBS

factors and their effective hit ratios (pSB�PER;i and pR�CB;i)

approach their upper bounds in Lemma 1. This claim is

verified through simulations and shown in Section 7.
The above analysis can also be applied to the commu-

nication cost of the SB-PER due to Corollaries 1 and 3.

According to Corollaries 1 and 3, we have

cLSB�PER ¼ creq þ 1� pUSB�PER
� �

cobj þ pUSB�PERcack

¼ creq þ cobj �
1

�
cobj � cack
� �

lim
t!1

XN
i¼1

OBSFkið Þ:

ð37Þ

It implies that the communication cost lower bound of the SB-

PER becomes less when data items with larger OBS factors are

in the cache. This is also confirmed by Corollary 3. When

there is no replacement, the communication cost is exactly

the lower bound given in Corollary 1. The OBS always tries

to keep data items with large OBS factors in the cache and

to evict data items with small OBS factors. The actual

communication cost of the data items with large OBS factors

tends to be small.
As to the R-CB, we have the following observations

according to Corollary 2:

cLR�CB ¼ 1� pUR�CB
� �

creq þ cobj þ cinv þ cack
� �

¼ creq þ cobj þ cinv þ cack
� �

� 1

�
creq þ cobj þ cinv þ cack
� �

lim
t!1

XN
i¼1

OBSFki:

ð38Þ

Though the lower bound cannot actually be reached, the

difference is no more than two message costs. Considering

that the data item sizes are large, we can have a similar

argument as the SB-PER.
In summary, the OBS replacement policy favors caching

the data items with good bounds, that is, the OBS has the

capability of keeping good data items and evicting bad data

items in the cache. When these data items are cached, the

actual effective hit ratios of the data items actually

gradually approach the found bounds. The sum of the

effective hit ratios of these data items must be larger than

those of the data items otherwise chosen. The performance

evaluation presented in Section 7 confirms the effectiveness

of the OBS replacement policy.

1602 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

6 COMMENTS ON REPLACEMENT POLICIES OF

NETWORK DATA APPLICATIONS

Cache replacement policies play an important role when the
cache size is very limited. Many MTs have small memory
when compared with the data items being accessed.
Therefore, replacement policies are important aspects of
mobile/wireless data caching.

The least recently used (LRU) replacement policy is
popular in operating systems and computer architecture
areas because data and programs are often stored con-
tinuously in memory or hard disks. The access pattern
forms the so-called locality. Moreover, the LRU can be
regarded as the simplest replacement policy. For data
applications where the data access pattern is not bound
with their location (in memory or hard disks), the LRU is
not necessarily a good choice. As shown in [22], bursty
access patterns make the LRU perform inadequately.
Furthermore, it could be the worst choice, as shown in
[11], for some database systems queries. It will be beneficial
to study different replacement policies for network data
applications where a busty access pattern is not uncommon.
Many frequency-based replacement policies have been
designed, studied, and even implemented for real systems,
for example, the SQUID Web proxy cache system [2], [10],
[12], [22], [23], [26], [29], [30]. An example of such a
replacement policy is the LFU. The goal of this paper is to
use both update and access frequencies to design a simple
and effective replacement policy.

Many cache replacement policy evaluations use network
traces, which are representations of real data collected from
real networks. However, network traces are only samples
and the performance evaluations of different traces can vary
from trace to trace, as shown in [5]. In this paper, we use
Poisson distributions to model the network data accesses
and updates. Poisson distribution may not be a precise
model but it is indeed a generalization of network data
accesses and updates. It has been used quite often in
research of this kind [17], [29], [30].

In our study, we assume that data items are of the same
size. First, as observed in [5], the effectiveness of data item
size used in replacement policies diminished for some
network traces. Second, our paper is aimed at network data
applications, where memory pages can be regarded as a
unit of data item for a non-Web application. Third, the
combinatorial optimization problem of multiple data items
of different sizes for the cache replacements is NP-hard [30].
We leave this problem to our future work.

7 PERFORMANCE EVALUATION

In this section, we use discrete-event simulation to evaluate
the performance of the proposed replacement policy, the
OBS, and also compare its performance with that of the LFU
[23] by using perfect access frequency information [26]. We
developed our simulation programs in C++.

7.1 Performance Metrics

The design goals of our replacement policy are to
increase the effective hit ratio and to reduce communica-
tion cost. During the simulations, we collect the following

measurements to calculate the effective hit ratios and the
communication costs for both the SB-PER and the R-CB
with the OBS or the LFU.

Let na;j and nu;j denote the total number of accesses to
data item Oj at the client and the total number of updates to
data item Oj at the server, respectively. Let nmiss be the total
number of cache misses and ninv�hits be the total number of
cache hits to invalid data items. Note that, whenever a cache
miss or a cache hit to an invalid data item happens, the
accessed data item is sent from the server to the client.
When the R-CB is exercised, an invalidation message is
delivered to clients, where the data item being updated is
cached. Let ninv�msg represent the total number of invalida-
tion messages. Let nrep denote the total number of cache
replacements. Let na denote the total number of accesses of
all data items. It is obvious that we have nrep � na and
nmiss � na. Similarly to [20], we can compute the effective
hit ratios in the simulations as follows:

pSB�PER ¼ pR�CB ¼ 1� nmiss þ ninv�hits
na

;

where na ¼
XN
i¼1

na;j:

ð39Þ

We compute the communication cost for the SB-PER, that is,
cSB�PER, and that for the R-CB, that is, cR�CB, by using (16)
and (21), respectively. Note that, for the R-CB, we also have

pinv ¼
ninv�msg
na

; ð40Þ

prep ¼
nrep
na

: ð41Þ

7.2 Simulation Setup

The server has N data items and a client equips a cache
which can hold up to K data items. Assume that access and
update events are Poisson processes. An access always
happens at a client and an update always occurs at the
server. The rates of the access and the update to the data
item Oj are �j and �j, respectively. We denote total access
rate and total update rate as � and �, respectively, that is,
� ¼

PN
i¼1 �i, and � ¼

PN
i¼1 �i.

Two issues are worth noting:

. N is not necessarily the actual database size because
the database may contain data items that are never
accessed by a particular client in a certain time frame
in which we are interested. Therefore, N is actually
an “effective database size.” For mobile/wireless
clients, N can be relatively small, even though the
actual database may be huge. To reflect this fact in
our simulation studies, any access rate of the N data
items must be larger than 0 and N takes a relatively
small value.

. Update frequencies are global statistics measured at
the server, whereas access frequencies are local
statistics collected for clients. Therefore, the update
rate of a data item can be larger than the access rate
of a data item because more than one client can have
updated the data item between two consecutive
accesses to the data item at a client.

CHEN AND XIAO: ON-BOUND SELECTION CACHE REPLACEMENT POLICY FOR WIRELESS DATA ACCESS 1603

It has been observed that, in Web applications, different
data items have different popularities. To reflect this
observation, we let access events of different data items
follow cutoff Zipf-like distributions [4]. It is believed to be a
reasonable assumption for Web applications and a repre-
sentation for disparity of access popularity, though it may
not hold for any network data application. We let the
update rates of different data items become different. For
simplicity, we assume that the update events also follow
cutoff Zipf-like distributions. N data items are always
ranked as i ¼ 1; 2; . . . ; N . Thus, when an access or an update
happens, the data item Ok whose rank is i is chosen to be
accessed or updated at probability pi ¼ 1=½i�

PN
j¼1 1=j��.

Note the following remarks:

. We define � ð� � 0Þ as a Zipf exponent. When � ¼ 0,
pi ¼ 1=N , that is, all data items are chosen at the
same probability 1=N . The access and update events
do not necessarily follow the same cutoff Zipf-like
distribution. Let �a denote the Zipf exponent of
access events and �u be the Zipf exponent of update
events.

. Data item identifier (ID) and data item rank are
different concepts, that is, data item Oi is not
necessarily ranked as i.

. Data items can be ranked independently for access
and update events. A data item with rank i for access
events is not necessarily the data item with rank i for
update events. Thus, a data item with a larger access
probability is not necessarily a data item with a
larger update probability.

Since there are two different Zipf-like distributions for
access and update events, we categorize their relationships
into five cases:

. Case 1. �a > 0 and �u ¼ 0, that is, the access
frequencies of different data items are different and
the update frequencies of all data items are the same.

. Case 2. �a ¼ 0 and �u > 0, that is, the access
frequencies of all data items are the same and the
update frequencies of different data items are
different.

. Case 3. �a > 0, �u > 0, and the access and update
rankings to the same data item are the same, that is,
a more frequently accessed data item is also a more
frequently updated data item. Furthermore, the
access frequencies of different data items are
different and the update frequencies of different
data items are different.

. Case 4. �a > 0, �u > 0, the access rankings of data
items are in an ascending order, and the update
rankings are in a descending order, that is, a more
frequently accessed data item is also a less fre-
quently updated data item. Furthermore, the access
frequencies of different data items are different and
the update frequencies of different data items are
different.

. Case 5. �a > 0, �u > 0, and the access and update
rankings of data items are totally independent, that
is, if we order the data items according to access
probabilities, the update probabilities tend to be

randomly distributed. Furthermore, the access fre-
quencies of different data items are different and the
update frequencies of different data items are
different.

All of the above cases are studied in the simulations. We
let creq ¼ cack ¼ cinv ¼ ca ¼ 60, which is a reasonable value
for many wireless systems such as General Packet Radio
Service (GRPS) and iSMS [20]. Since these message sizes are
the same, we use cmsg ¼ 60 to denote the message size.
Unless otherwise stated, we choose cobj ¼ 10cmsg ¼ 600,
N ¼ 20, K ¼ 10, � ¼ 1:0, � ¼ 1:4, �a ¼ 0:1, and �u ¼ 1:8.
Though these default parameters are chosen to capture the
scenario where data items have different access rates and a
small portion of the entire data set has very high update
rates, we vary each parameter in Section 7.5 (for example,
�u from 0 to 1 and � from 1 to 5) and study their effects on
the performance. We start the simulation when the client
cache is empty. We obtain the metrics measurements when
the system has reached a stable state for a long time. To
meet this requirement, we often run the simulation for
107 arrival events.

7.3 Comparison of Simulation and Analytical
Results

We compare the analytical and simulation results for the SB-
PER and the R-CB. We choose K ¼ 20 and �a ¼ 0. This is
Case 2 and there will be no replacement. The effective hit
ratios and communication costs are obtained accordingly for
both the SB-PER and the R-CB. Fig. 3a shows the effective hit
ratio upper bounds and the effective hit ratios from
simulations for both the SB-PER and the R-CB. Fig. 3b shows
the communication upper bounds and the communication
costs from simulations for both the SB-PER and the R-CB.

We have the following observations:

. Fig. 3a shows that the effective hit ratios of the SB-
PER and the R-CB are the same in the given case and
they match the effective upper bounds defined in
Theorem 1. It therefore confirms Theorem 2. Fig. 3b

1604 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

Fig. 3. Comparison of analytical and simulation results for both SB-PER

and R-CB. (a) Effective hit ratio versus total update rate (�).

(b) Communication cost versus total update rate (�).

shows that the communication upper bounds of the
SB-PER defined in Corollary 1 match the simulation
results obtained in the given case. This confirms
Corollary 3. The communication upper bound of the
R-CB defined in Corollary 2 is less than both the
analytic and simulation results obtained in the given
case, but the difference is less than two message
costs. This confirms Corollary 4.

. Even though the cache is sufficiently large to hold
the entire database, the effective hit ratios decrease,
whereas the communication costs increase for both
the SB-PER and the R-CB when � increases, as
shown in Figs. 3a and 3b. This is because some
cached data items are invalidated by updates. It
implies that it is important to consolidate the update
process into replacement policies so that frequently
updated but infrequently accessed data items will
not be cached. Our analytical analysis provides an
understanding of what a frequently updated but
infrequently accessed data item can be.

7.4 Effects of “OBS”

The simulation results shown in Fig. 4 demonstrate the
effects of “OBS.” As an example, we only have the result
obtained for Case 3, where �u ¼ 1:0. In Fig. 4, the data items
are assigned ID numbers according to their upper bounds,
that is, their OBS factors. For example, the data item with
the least ID has the least OBS factor. When the OBS is
exercised, K data items with the most upper bounds almost
achieve the most, that is, the “upper bound” in the figure.
However, when the LFU is exercised, the opposite result is
observed. This figure confirms that the OBS indeed keeps a
“good” data item in the cache.

Interestingly, none of the data items has zero effective hit
ratios. This is due to the existence of updates. A cached data
item always has a chance of being invalidated and its cache
space can be used to cache other data items no matter what
replacement policy is used and what its update and access
rates are.

7.5 Frequency Measurement

We adopt a sliding window scheme [10], [12], [30] for

calculating the access and update frequencies in the

algorithms. For each data item, we measure the k most

recent access times. We calculate the access frequency of

data item i as follows: fai ¼ k
t�ta

i;k
, where the superscript

“a” denotes access, t is the current time, and tai;k is the

time of the kth most recent access on data item Oi.

Similarly, we calculate the update frequency of data

item i as follows: fui ¼ k
t�tu

i;k
, where the superscript “u”

denotes update. When k ¼ 1, fai is directly related to the

access recency of the data item. Therefore, by adjusting k

for access to data item Oi, f
a
i can be a measurement for

both access frequency and access time (that is, access

recency). Similarly, by adjusting k for updates to data

item Oi, fui can be a measurement for both update

frequency and update time (that is, update recency).
Fig. 5 shows that the defined metrics vary with the

sliding window size. All five cases described in Section 7.2
show similar results. For demonstration purposes, we only
show the result of Case 3, in which the performance slightly
varies with different window sizes and the performance
becomes almost invariant with window size when the
window size is large enough.

Denote the sliding window size as k. It appears that the

overall memory space needed for the above scheme is on

the order of OðkNÞ to store most k recent access (or update)

times of N data items. The scheme seems to become

prohibitive when k is large. The following example shows

that it is not difficult to overcome it: From observation of

Fig. 5, when k is large enough, a similar performance can be

obtained when we use k=2 as the window size. We only

keep two access stamps and two access counters for data

item Oi. We denote tai;na;i¼0 mod k as the access timestamp of

data item Oi when na;i ¼ 0 mod k, where na;i is the total

number of accesses on data item Oi and “mod” is modular

operation. Let tai;na;i¼0 mod k=2 be the access timestamp of data

item Oi when na;i ¼ 0 mod k=2. We reset counter ki;na;i¼0 mod k

at time tai;na;i¼0 mod k and counter ki;na;i¼0 mod k=2 at time

tai;na;i¼0 mod k=2 respectively. We then calculate the access

frequency as follows: fai ¼ ki;na;i¼0 mod k

�
t� tai;na;i¼0 mod k when

CHEN AND XIAO: ON-BOUND SELECTION CACHE REPLACEMENT POLICY FOR WIRELESS DATA ACCESS 1605

Fig. 4. Effects of on-bound selection.
Fig. 5. Performance of SB-PER+OBS versus sliding window size.
(a) Effective hit ratio versus sliding window size. (b) Communication cost
versus sliding window size.

ki;na;i¼0 modk � k=2, and fai ¼ ki;na;i¼0 mod k=2

�
t� tai;na;i¼0 mod k=2

when ki;na;i¼0 mod k=2 � k=2. Then, the space complexity

becomes OðNÞ, which is the same as the LRU.
The above sliding window approach can be regarded as

a very simple aging method. Aging [10], [12] is a well-
known mechanism for considering both access frequency
and the age of a cached data item (access time or recency). A
well-designed aging method not only helps reduce the
memory space requirement, but also helps cope with the
evolving access (update) pattern. Many different aging
methods [10], [12] have been proposed. Some cache
replacement policies, such as LRU-K [22], have built-in
aging mechanisms. In our study, aging has to be considered
for both the access and update processes. Better aging
methods can help our proposed replacement policy better
cope with the evolving access (update) pattern. They
deserve dedicated study due to their complexity. However,
they are not the focus of this paper and we leave it as our
future work.

7.6 Comments on the Importance of Cache
Replacement Policies

MTs are gradually gaining more memory which can be
used for client caching. We aim at reducing the overall
network bandwidth usage. For this purpose, cache replace-
ment policies cannot be ignored, even for MTs with large
cache space. This argument holds true for cache mechan-
isms which involve CB procedures. We refer to the CB
procedure as the procedure in which the server informs
clients that cached data items have become invalid due to
updates. The CB (for example, R-CB in this paper), Lease,
and IR schemes use the CB procedure. Our argument is
verified in Fig. 6. We choose creq ¼ cack ¼ cinv ¼ ca ¼ 60,
cobj ¼ 2cmsg ¼ 120, N ¼ 20, K ¼ 10, � ¼ 1:0, � ¼ 5. These
20 data items are divided into four groups. The access rates
(update rates) of the data items within the same group are
the same. The access rates and updates are drawn from two
different Zip-like distributions, with �a ¼ 0:1, and �u ¼ 10;
however, the rankings of the four groups for access and
update processes are of opposite directions (similar to
Case 4 described in Section 7.2). This parameter setting
ensures that some data items are moderately frequently
accessed but are updated very frequently and the cost of
sending invalidation messages is quite large. Fig. 6 com-
pares four cache replacement policies, that is, OBS, LFU,

LRU, and LRU-K [22], where K is taken to be 2 when R-CB
is exercised. The following observations are interesting:

. Fig. 6a shows that the effective hit ratios of all four
replacement policies increase with the cache size.

. Fig. 6b shows that the minimum communication cost
is obtained when K ¼ 10 for R-CB+OBS and
R-CB+LFU when the cache size is varying. The
server needs to send an invalidation message when
an update happens to it. It is likely that the client has
to fetch a data item from the server due to frequent
updates. Then, the cost of sending an invalidation
message may not be offset by using the cached copy.
In our parameter setup, when the cache space is
larger than 10 data items, such types of frequently
updated data items will inevitably be cached. The
total communication cost goes up while more such
data items are cached. Fig. 6b also shows that
R-CB+LRU and R-CB+LRU-K have larger costs
when given a small cache space. This can be
explained similarly.

. Figs. 6a and 6b also show that R-CB+LFU/OBS has
better performance than R-CB+LRU/LRU-K. This is
due to 1) the nonexistence of the locality related to
the adjacency of memory location where the data
items are stored (in other words, recency does not
capture the data access pattern well) and 2) they do
not consider updates. This has been discussed in
Section 6. Due to page limits, we will not further
compare our replacement policy with LRU and
LRU-K in this paper.

In a nutshell, cache replacement policies are not necessarily
good for the overall network bandwidth usage when
maximizing cache space. Nevertheless, cache replacement
policies are essential to a network environment with the
existence of updates, even when memory capacity is
abundant.

7.7 Case Studies: Comparison of OBS and LFU

The following simulations will show that the OBS outper-
forms the LFU in terms of both effective hit ratio and
communication cost in all five cases listed in the previous
subsection. This aspect is shown with regard to different
parameters, that is, the Zipf-exponents, cache and database
sizes, and access and update rates.

7.7.1 Zipf Exponents

The two schemes are compared when the Zipf exponents
are varying. The results are shown in Fig. 7.

. Figs. 7a and 7b show an example of Case 1, that is,
�a > 0 and �u ¼ 0. In Figs. 7a and 7b, (SB-PER)/
(R-CB)+OBS have the same effective hit ratios and
costs as (SB-PER)/(R-CB)+LFU, respectively. It
means that OBS and LFU perform the same in this
example. In fact, according to (1), the OBS is
equivalent to the LFU if the update frequencies of
data items are the same, which has been confirmed
by this example, since the update frequencies of data
items are indeed the same in this case.

. Figs. 7c and 7d show an example of Case 2, that is,
�a ¼ 0 and �u > 0. They show that (SB-PER)/
(R-CB)+OBS have consistently larger effective hit
ratios and consistently smaller costs than (SB-PER)/
(R-CB)+LFU, respectively. In other words, the OBS
outperforms the LFU.

1606 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

Fig. 6. Performance of R-CB and replacement policies. (a) Effective

hit ratio versus cache size (K). (b) Communication cost versus cache

size (K).

. Figs. 7e and 7f show an example of Case 3, that is,
�a > 0, �u > 0, and the ranking of access and update
to the same data item are the same. We observe
similar results as in Case 2, that is, (SB-PER)/
(R-CB)+OBS have consistently larger effective hit
ratios and less costs than (SB-PER)/(R-CB)+LFU,
respectively. It means that the OBS chooses appro-
priate data items to evict from the cache so that
better performance is achieved, even if the fre-
quently accessed data items are also frequently
updated data items.

. Figs. 7g and 7h show an example of Case 4, that is,
�a > 0 and �u > 0 in which the rankings of data
items for accesses are in ascending order and those
for updates are in descending order. For example,
frequently accessed data items are also infrequently
updated data items. The OBS tends to cache
frequently accessed data items but not infrequently
updated data items, which is consistent with the
LFU in this particular case. Therefore, it is not
surprising that the OBS and the LFU perform the
same.

. Figs. 7i and 7j show an example of Case 5, that is,
�a > 0 and �u > 0, in which the rankings of data
items for both accesses and updates are totally
independent. Because access and update probabil-
ities are assigned randomly, every different run
possibly produces a different result. Thus, the
average performance should be more representative
than an individual run. Figs. 5i and 5j show the
average performance out of 50 different runs. It is
clear that the (SB-PER)/(R-CB)+OBS have larger
effective hit ratios and less communication costs
than (SB-PER)/(R-CB)+LFU, respectively.

All five of these possible cases show the advantage of the
OBS over the LFU, which confirms that the OBS, indeed, is

capable of choosing “the bad data item” to be evicted while
retaining “the good data item,” regardless of the Zipf
exponents.

We also have the following observations:

. As shown in Figs. 7a, 7c, 7g, and 7i, when �u
increases, the effective hit ratio increases as well.
�u’s increasing means that fewer data items take up
most of the total update rate and others have smaller
update rates, even though the total update rate is the
same. The OBS tends to cache data items with
smaller update rates. Those few data items with
larger update rates are probably cached a smaller
number of times. The most cached data items have
smaller update rates. Therefore, the cached data
items are less likely to be made invalid by updates
and the effective hit ratio is increased.

. As shown in Figs. 7b, 7d, 7h, and 7j, when �u
increases, the communication cost decreases. It is
due to the same reason as the above.

. Fig. 7e shows that the effective hit ratio decreases first
and then increases when �u increases. Fig. 7f shows
that the communication cost increases first and then
decreases when�u increases. Basically, the increase of
the effective hit ratio and the decrease of the
communication cost are caused by the reason above.

7.7.2 Cache and Database Sizes

Fig. 8 shows the comparison between the OBS and the LFU
when we vary the cache size and fix the database size. As
before, five different cases are studied. We have the
following observations:

. Figs. 8a and 8b show an example of Case 1, that is,
�a > 0 and �u ¼ 0. Both replacement policies have
the same effective hit ratios and costs, that is, OBS
and LFU perform the same in this example,
regardless of the cache size, due to the same reason
presented for Figs. 7a and 7b.

CHEN AND XIAO: ON-BOUND SELECTION CACHE REPLACEMENT POLICY FOR WIRELESS DATA ACCESS 1607

Fig. 7. Performance of the OBS and the LFU at different cases with regard to the Zipf exponents. (a), (c), (e), (g), and (i) show effective hit ratio

versus Zipf exponent of access events (�a) for Cases 1, 2, 3, 4, and 5, respectively. (b) , (d), (f), (h), and (j) show communication cost versus Zipf

exponent of access events (�a) for Cases 1, 2, 3, 4, and 5, respectively.

. Figs. 8c and 8d show an example of Case 2, that is,
�a ¼ 0 and �u > 0. OBS has better performance than
LFU, regardless of the cache size.

. Figs. 8e and 8f show an example of Case 3, that is,
�a > 0, �u > 0, and the ranking of access and update
to the same data item are the same. OBS has better
performance than LFU, regardless of the cache size.

. Figs. 8g and 8h show an example of Case 4, that is,
�a > 0:1, 1 > 0, and �u > 0, in which the rankings of
data items for accesses are in ascending order and
those for updates are in descending order. For
example, frequently accessed data items are also
infrequently updated data items. It is not surprising
that the OBS and the LFU perform the same.

. Figs. 8i and 8j show an example of Case 5, that is,
�a > 0 and �u > 0, in which the ranking of data
items for both accesses and updates are totally
independent. The results are the average perfor-
mance out of 50 different runs. It is clear that the
(SB-PER)/(R-CB)+OBS have larger effective hit
ratios and less communication costs than (SB-
PER)/(R-CB)+LFU, respectively.

Besides the above observations, it is clear that, from the
simulation results shown in Fig. 8, the effective hit ratios of
(SB-PER)/(R-CB)+OBS/LFU increase with the cache size. In
our examples, the communication costs decrease when the
cache size increases. This is because, when the cache size
increases, more data items are cached. However, no matter
how the cache size varies, we have shown that (SB-PER)/
(R-CB)+OBS have better performance than (SB-PER)/
(R-CB)+LFU.

We study how performances of (SB-PER)/(R-CB)+OBS/
LFU vary with the database size when the cache size is
fixed. The results are shown in Fig. 9, where K ¼ 10:

. Figs. 9a and 9b show an example of Case 1 and
Figs. 9g and 9h show an example of Case 4. These
two examples show that the OBS and the LFU have
the same performance, whether the SB-PER or the

R-CB is exercised. It is due to an argument similar to
the one shown in Figs. 7a, 7b, 7g, and 7h.

. Figs. 9c and 9d, 9e and 9f, and 9i and 9j show
examples for Cases 2, 3, and 5, respectively.
Evidently, the OBS consistently outperforms the
LFU, whether the SB-PER or the R-CB is exercised.

These observations evidently show that the OBS is a
better replacement policy than the LFU in terms of effective
hit ratio and communication cost.

Fig. 10 shows the performance varying withN whenK=N
is a constant. For demonstration purposes, only Case 3,
where �u ¼ 1:0, is shown. Evidently, Figs. 10a and 10b
show that OBS always performs better when the database
and cache sizes scale up.

7.7.3 Access and Update Rates

In this part, we study the effects of access and update rates,
that is, � and �. Fig. 11 shows the simulation results, where
� is fixed and � is varying. We can observe similar results as
before:

. Figs. 11a and 11b and 11g, and 11h correspond to
Cases 1 and 4, respectively. They show that the OBS
and the LFU have almost the same performance,
regardless of �, when either the SB-PER or the R-CB
is exercised. Figs. 11c and 11d, 11e and 11f, and 11i
and 11j show the results for Cases 2, 3, and 4,
respectively. They show that the OBS outperforms
the LFU, regardless of �, when either the SB-PER or
the R-CB is exercised.

The above two observations show that the OBS is either
better than or equivalent to the LFU, regardless of �.
Besides, no matter the case, the effective hit ratios of (SB-
PER)/(R-CB)+OBS/LFU decrease and the communication
costs of (SB-PER)/(R-CB)+OBS/LFU increase when �
increases. When � increases, a data item has a greater
chance of being updated. If the data item is cached, it has a
greater chance of being invalidated. Therefore, the effective

1608 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

Fig. 8. Performance of the OBS and LFU at different cases with regard to the cache size. (a), (c), (e), (g), and (i) show effective hit ratio versus cache

size (K) for Cases 1, 2, 3, 4, and 5, respectively. (b), (d), (f), (h), and (j) show communication cost versus cache size (K) for Cases 1, 2, 3, 4, and 5,

respectively.

hit ratios of (SB-PER)/(R-CB)+OBS/LFU become less and
the communication costs of those become more.

7.8 Comments on the Server-Based Approach

In order to reduce transmission cost over wireless links, we
have introduced the server-based cache access algorithm,
that is, the SB-PER, to test our update-based replacement
policy, that is, the OBS. The SB-PER is capable of providing
up-to-date access and updated information to the replace-
ment policy. In general, the SB-PER requires more powerful
servers. Since servers are much more inexpensive compared
to wireless links, we assume that a server can be easily
upgraded with a more powerful machine or a cluster of
machines, that is, a virtual server or a server farm.
Furthermore, when compared with the client-based cache
access algorithm, the SB-PER improves the effective hit ratio

significantly, that is, fewer data items are fetched from the
server. Therefore, our algorithm may perform even better in
terms of response time.

Server response time is related to many factors. CPU
cycles are on the order of microseconds (�s) or even less,
and the hard disk random-seek time is on the order of a few
milliseconds (ms). Therefore, the hard disk random-seek
time is often a dominant factor for server response times
[25]. We assume that the server stores object profiles and
update profiles in the main memory; therefore, accesses to
two of these profiles do not result in a random seek on hard
disks. As shown in Fig. 2a, a random seek is performed to
locate the data item on the hard disk only when the data
item is cached or the data item is invalid (Steps 2.4 and 3.2).
For a fair comparison, we assume that metadata including
timestamps of data items can be loaded into the main
memory as well when the PER is exercised so that the PER
requires a random seek when the data item is not cached or
invalid too. Fig. 12 compares the random-seek count per
access between the PER and the SB-PER (only Case 5 is
shown). However, the PER is exercised with the LFU and
the SB-PER uses the OBS. A different replacement policy is
chosen for the PER because the PER does not provide
update information to the clients and the clients cannot use
the OBS. Fig. 12 shows that the SB-PER has a much smaller
random-seek count per access. In other words, the SB-PER
outperforms the PER in terms of server response time under
our parameter settings.

7.9 More General Network Traffic

In our analytical analysis in Section 5, data access and
update follow a Poisson distribution. In this section, we
loosen the assumption of Poisson distribution to demon-
strate the performance of the proposed OBS under a more
general network traffic model. Fig. 13 is obtained when both
access and update processes follow Gamma distributions.
Although similar results can be obtained for other cases, the
figure only shows Case 3, as defined in Section 7.2. In
Figs. 13a and 13b, we vary the variance of access time. The
results show that 1) the effective hit ratio and the

CHEN AND XIAO: ON-BOUND SELECTION CACHE REPLACEMENT POLICY FOR WIRELESS DATA ACCESS 1609

Fig. 9. Performance of the OBS and LFU at different cases with regard to the database size when the cache size is fixed. (a), (c), (e), (g), and (i)

show effective hit ratio versus database size (N) for Cases 1, 2, 3, 4, and 5, respectively. (b), (d), (f), (h), and (j) show communication costs versus

database size (N) for Cases 1, 2, 3, 4, and 5, respectively.

Fig. 10. Performance of the OBS and LFU versus N (K=N is a
constant). (a) Effective hit ratio versus sdatabase size (N).
(b) Communication cost versus database size (N).

transmission costs of SB-PER/R-CB+OBS/LFU do not vary
significantly with the variance and 2) the OBS replacement
policy consistently outperforms the LFU, regardless of
whether the SB-PER or the R-CB is exercised when the
variance of access time is varying. This suggests that the
proposed OBS can be applied to more general network
traffic and consistently give better performance even
though it is based on a more stringent assumption.

8 CONCLUSION

An update can make a cached data item obsolete and, thus, a
cache hit becomes useless. Little research has consolidated
the update process into a cache algorithm design, especially
the cache replacement policy design. In this paper, we
proposed a replacement policy, the OBS, which uses both
access and update frequencies. We conducted an analytical
analysis of cache access and update. An upper bound of the
effective ratio and a lower bound of communication cost are
given. We further show that the upper bound of the effective

hit ratio and the lower bound of the communication cost can
be reached when there is no replacement. According to our
understanding of these bounds, we show that the proposed
replacement policy tries to keep the good data items in the
cache and to evict the bad data items from the cache in terms
of increasing the effective hit ratio and reducing the
communication cost. We studied its performance with two
cache access algorithms, the SB-PER and the R-CB, through
discrete-event simulations. The simulation results show that
the OBS outperforms the LFU in terms of both the effective
hit ratio and the communication cost in all of the possible
cases that we have studied. Therefore, we believe that the
OBS indeed asymptotically keeps the good data items in the
cache while evicting the bad ones.

In the simulations, we further loosen the traffic assump-
tion with Gamma distributions and similar results are
observed. In our future work, we will address the effects of
different data item sizes and extend update-based replace-
ment policies to client-based cache access algorithms.

1610 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 12, DECEMBER 2007

Fig. 11. Performance of the OBS and LFU at different cases with regard to the total update rate when the total access rate is fixed. (a), (c), (e), (g),
and (i) show effective hit ratio versus total update rate (�) for Cases 1, 2, 3, 4, and 5, respectively. (b), (d), (f), (h), and (j) show communication costs
versus total update rate (�) for Cases 1, 2, 3, 4, and 5, respectively.

Fig. 12. Random-seek count per access versus �u.

Fig. 13. Metrics of network traffic of Gamma distribution. (a) Effective
hit ratio versus the variance of acess time. (b) Communication cost
versus the variance of access time.

REFERENCES

[1] S. Acharya and S. Muthukrishnan, “Scheduling On-Demand
Broadcasts: New Metrics and Algorithms,” Proc. ACM MobiCom
’98, pp. 43-54, 1998.

[2] A. Balamash and M. Krunz, “An Overview of Web Caching
Replacement Algorithms,” IEEE Comm. Surveys and Tutorials,
vol. 6, no. 2, pp. 44-56, 2004.

[3] D. Barbará and T. Imieli�nksi, “Sleepers and Workaholics: Caching
Strategies for Mobile Environments (Extended Version),” VLDB J.,
vol. 4, no. 4, pp. 567-602, 1995.

[4] L. Berslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-Like Distributions: Evidence and Implications,”
Proc. IEEE INFOCOM ’99, vol. 1, pp. 126-134, Mar. 1999.

[5] P. Barford, A. Bestavros, A. Bradley, and M. Crovella, “Changes in
Web Client Access Patterns: Characteristics and Caching Implica-
tions,” World Wide Web J., vol. 2, pp. 15-28, 1999.

[6] J. Cai and K.-L. Tan, “Energy-Efficient Selective Cache Invalida-
tion,” Wireless Networks, vol. 5, no. 6, pp. 489-502, 1999.

[7] G. Cao, “Proactive Power-Aware Cache Management for Mobile
Computing Systems,” IEEE Trans. Computers, vol. 51, no. 6,
pp. 608-621, June 2002.

[8] G. Cao, “A Scalable Low-Latency Cache Invalidation Strategy for
Mobile Environments,” IEEE Trans. Knowledge and Data Eng.,
vol. 15, no. 5, Sept./Oct. 2003.

[9] B.Y.L. Chan, A. Si, and H.V. Leong, “Cache Management for
Mobile Databases: Design and Evaluation,” Proc. 14th Int’l Conf.
Data Eng. (ICDE ’98), pp. 54-63, Feb. 1998.

[10] L. Cherkasova and G. Ciardo, “Role of Aging, Frequency, and Size
in Web Cache Repalcement Policies,” Lecture Notes in Computer
Science, vol. 2110, pp. 114-123, 2001.

[11] H. Chou and D. DeWitt, “An Evaluation of Buffer Management
Strategies for Relational Database Systems,” Proc. 11th Int’l Conf.
Very Large Data Bases (VLDB ’85), pp. 141-172, 1985.

[12] J. Dilley, M. Arlitt, and S. Perret, “Enhancement and Validation of
the Squid Cache Replacement Policy,” Proc. Fourth Int’l Web
Caching Workshop (WCW ’99), 1999.

[13] C.C.F. Fong, J.C.S. Liu, and M.H. Wong, “Quantifying Complexity
and Performance Gains of Distributed Caching in a Wireless
Network Environment,” Proc. 13th Int’l Conf. Data Eng. (ICDE ’97),
pp. 104-113, Oct. 1997.

[14] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan,
R. Sidebotham, and M. West, “Scale and Performance in a
Distributed File System,” ACM Trans. Computer Systems, vol. 6,
no. 1, pp. 51-58, Feb. 1988.

[15] Q.L. Hu and D.L. Lee, “Cache Algorithms Based on Adaptive
Invalidation Reports for Mobile Environments,” Cluster Comput-
ing, vol. 1, no. 1, pp. 39-48, Feb. 1998.

[16] A. Iyengar, E. Nahum, A. Shaikh, and R. Tewari, “Web Caching,
Consistency and Content Distribution,” The Practical Handbook of
Internet Computing, M.P. Singh, ed., Chapman & Hall/CRC Press,
2005.

[17] R. Jain, The Art of Computer Systems Performance Analysis. John
Wiley & Sons, 1991.

[18] J. Jing, A.K. Elmagarmid, A. Helal, and R. Alonso, “Bit-Sequences:
A New Cache Invalidation Method in Mobile Environments,”
Mobile Networks and Applications, vol. 2, no. 2, pp. 115-127, 1997.

[19] A. Kahol, S. Khurana, S.K.S. Gupta, and P.K. Srimani, “A Strategy
to Manage Cache Consistency in a Distributed Mobile Wireless
Environment,” IEEE Trans. Parallel and Distributed Systems, vol. 12,
no. 7, pp. 686-700, July 2001.

[20] Y.-B. Lin, W.-R. Lai, and J.-J. Chen, “Effects of Cache Mechanism
on Wireless Data Access,” IEEE Trans. Wireless Comm., vol. 2, no. 6,
pp. 1240-1246, 2003.

[21] M. Nelson, B. Welch, and J. Ousterhout, “Caching in the Sprite
Network File System,” ACM Trans. Computer Systems, vol. 6, no. 1,
pp. 134-154, Feb. 1988.

[22] E. O’Neil, P. O’Neil, and G. Weikum, “The LRU-K Page
Replacement Algorithm for Database Disk Buffering,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, pp. 297-306, 1993.

[23] J.T. Robinson and M.V. Devarakonda, “Data Cache Management
Using Frequency-Based Replacement,” Proc. ACM SIGMETRICS
Conf., pp. 134-142, 1990.

[24] K.L. Tan, J. Cai, and B.C. Ooi, “An Evaluation of Cache
Invalidation Strategies in Wireless Environments,” IEEE Trans.
Parallel and Distributed Systems, vol. 12, no. 8, pp. 789-807, Aug.
2001.

[25] A.S. Tanenbaum, Computer Networks, fourth ed. Prentice Hall PTR,
2003.

[26] J. Wang, “A Survey of Web Caching Schemes for the Internet,”
ACM SIGCOMM Computer Comm. Rev., vol. 29, no. 5, pp. 36-46,
1999.

[27] K.-L. Wu, P.S. Yu, and M.-S. Chen, “Energy-Efficient Caching for
Wireless Mobile Computing,” Proc. 12th Int’l Conf. Data Eng.
(ICDE ’96), pp. 336-343, Feb. 1996.

[28] Y. Xiao, “Optimal Location Management for Two-Tier PCS
Networks,” Computer Comm., vol. 26, no. 10, pp. 1047-1055, June
2003.

[29] J. Xu, Q. Hu, D.L. Lee, and W.-C. Lee, “SAIU: An Efficient Cache
Replacement Policy for Wireless On-Demand Broadcasts,” Proc.
Ninth ACM Int’l Conf. Information and Knowledge Management
(CIKM ’00), pp. 46-53, Nov. 2000.

[30] J. Xu, Q. Hu, W.-C. Lee, and D.L. Lee, “Performance Evaluation of
an Optimal Cache Replacement Policy for Wireless Data Dis-
semination,” IEEE Trans. Knowledge and Data Eng., vol. 16, no. 1,
pp. 125-139, Jan. 2004.

[31] J. Yin, L. Alvisi, M. Dahlin, and C. Lin, “Volume Leases for
Consistency in Large-Scale Systems,” IEEE Trans. Knowledge and
Data Eng., vol. 11, no. 4, pp. 563-576, July/Sept. 1999.

[32] J. Yuen, E. Chan, K.Y. Lam, and H.W. Leung, “Cache Invalidation
Scheme for Mobile Computing Systems with Real-Time Data,”
ACM SIGMOD Record, vol. 29, no. 4, pp. 34-39, 2000.

Hui Chen received the MS and PhD degrees in
computer science from the University of Mem-
phis, Tennessee, in 2003 and 2006, respectively.
He was a geophysicist and worked as a software
developer for AutoZone, Inc., from 2005 to 2007.
He joined the faculty of the Department of
Mathematics and Computer Science at Virginia
State University in 2007. Although he retains his
interests in studying computational problems in
Earth sciences, he primarily works on computer

system and networking research such as the design and analysis of
personal communication service systems, wireless LANs, wireless
sensors, mobile/wireless distributed systems, and cache systems for
wireless systems. He is serving as a guest editor for the EURASIP
Journal on Wireless Communications and Networking special issue on
wireless telemedicine and applications. He is the author of more than
30 scientific papers and articles. He is a member of the IEEE.

Yang Xiao was with Micro Linear as a Medium
Access Control (MAC) architect involving the
IEEE 802.11 standard enhancement work be-
fore he joined the Department of Computer
Science at the University of Memphis, Tennes-
see, in 2002. From 2001 to 2004, he was a
voting member of the IEEE 802.11 Working
Group. He is currently with the Department of
Computer Science at the University of Alabama.
He is currently the editor-in-chief of the Interna-

tional Journal of Security and Networks (IJSN), the International Journal
of Sensor Networks (IJSNet), and the International Journal of
Telemedicine and Applications (IJTA). He is an associate editor or on
the editorial boards of several journals, such as the IEEE Transactions
on Vehicular Technology. He is also a referee/reviewer for many funding
agencies, a panelist of the US National Science Foundation (NSF), and
a member of the Telecommunications Expert Committee, Canada
Foundation for Innovation (CFI). He is a member of the technical
program committees of more than 90 conferences, such as IEEE
INFOCOM, ICDCS, ICC, Globecom, and WCNC. His research interests
are security, telemedicine, sensor networks, and wireless networks. He
has published more than 200 papers in major journals (more than 50 in
various IEEE journals/magazines), refereed conference proceedings,
and book chapters related to his research areas. His research has been
supported by the NSF. He is a senior member of the IEEE and a
member of the American Telemedicine Association.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHEN AND XIAO: ON-BOUND SELECTION CACHE REPLACEMENT POLICY FOR WIRELESS DATA ACCESS 1611

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

